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Earthquakes and tsunamis cause a variety of electromagnetic (EM) phenomena. Especially, tsunamis trigger two major ph
nomena: (1) tsunami motional induction, where EM variations are generated by conductive seawater moving in the geomagnet
main field, and (2) tsunami-atmosphere-ionosphere (TAI) coupling, where rapid sea surface deformations due to tsunamis cau
atmospheric gravity waves reaching ionosphere and driving electric current system there. Although both phenomena are i
portant because of their potential to contribute to tsunami early warning, it is sometimes difficult to distinguish these effects in
magnetic data observed at ground/seafloor observatories, based on the frequency or the starting time of the variations (Minan
2017). To identify these effects, we require an accurate model for either of tsunami motional induction or of TAI coupling. How-
ever, magnetic variations obtained from previous TAl simulations are not reliable at ground level because they do not include
the effect of conductivity structure of the Earth’s interior and of conductive seawater (e.g., Kherani et al., 2016). On the other
hand, it is known that EM variations due to tsunami motional induction are not affected significantly by conductivity structures
beneath the seafloor (Shimizu and Utada, 2014), which allows us to calculate the fields accurately when a reliable tsunami sour
model is available. We have already developed a three-dimensional simulation code for EM fields generated by tsunami motion:
induction. In this study, we try to constrain the form of electric current system in the ionosphere from the perspective of ground
and seafloor magnetic observations, by subtracting the effect of tsunami motional induction, for the case of the 2011 off the
Pacific coast of Tohoku earthquake tsunami.

We first calculated tsunami seawater velocity by using the modified COMCOT code (Kawashima and Toh, 2016) with an
existing source model (Satake et al., 2013). Secondly, our developed code was applied to calculate EM fields associated wi
tsunami motional induction. Finally, we subtracted the obtained magnetic variations due to motional induction from the observec
magnetic data at the on-land observatory, ESA, and the seafloor one, B14, which are located at 180 km west and 200 km east
the epicenter, respectively. As a result, we found that ESA and B14 have the opposite peak in the eastward component at 1~
15 min after the tsunami origin, while they have similar negative peaks in the downward component at 15 - 20 min. For both the
eastward and downward peaks, each peak at ESA precedes that at B14 by a few minutes. Note that we have already subtrac
the magnetic variation not related to the tsunami from the magnetic data by using magnetic transfer functions between B14 ¢
ESA, and the Memambetsu observatory. The resulting variations at ESA and B14 can be accounted for by a pair of southwar
and northward electric currents in the ionosphere that exists respectively in the west and east of the epicenter and propagat
outward. Although the distances from the epicenter to ESA and B14 may corresponds to the peak-time differences, we need 1
investigate the effect of induction associated with the conductivity structure of the Earth’s interior and conductive seawater.

In the presentation, we show the magnetic variations at ESA and B14 due to tsunami-generated electric current system in tt
ionosphere, which are obtained after subtraction of the estimated effect of tsunami motional induction. Furthermore, we plan t
report some results of attempts at representing the variation associated with the TAI coupling by a numerical simulation with the
pair of southward and northward electric current in the ionosphere mentioned above.
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