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Interpretation of conductivity structure of the Atera fault, central Japan, with the

results of seismic survey and borehole data

#Kei Ito") ,Miki Suyam&-®),Satoru Yamaguchi, Tadanori Got®,Shigehiro Kato® ,Hideki Murakam?

(1Graduate school of Science, Osaka City Univer@iBaculty of Science, Osaka City UniversigGraduate school of Sci-
ence, University of Hyog&*Museum of Human and Nature Activities, HyoffdJatural Sciences Cluster, Kochi University.,
(6QYO Corporatiorf Present address)

Surface and near surface structure of many active faults have been generally studied by geomorphological and geological
surveys. Geophysical methods (seismic, electro-magnetic and gravity methods etc.) are useful to reveal subsurface structure
of active faults.

The Atera fault zone in central Japan is one of the largest active faults in Japan and comprises the Sami, Shirakawa and
Atera faults. The Atera fault is about 70km long, left-lateral and highly active (2-4m/1000yrs.) fault segment. Furthermore,
some geophysical and boring surveys have been made around the fault. Therefore, it is possible to obtain reliable structure
by combining multiple geophysical results. We further made an Audio-frequency Magnetotelluric(AMT) survey to add new
constraint on the subsurface structure of this fault.

In this presentation, we show a newly determined resistivity model (ATR2021 model) and interpret subsurface structure
around the Atera fault considering this model, borehole data and results of seismic survey.

An AMT survey was newly conducted at 8 stations in November 2020 in addition to 18 stations obtained at the 2019
survey. Magnetic reference station was operated at the point about 9km apart from the center of the survey line. MTU-5A
systems (Phoenix Geophysics Ltd., Canada) were used at all stations.

MT impedances were determined according to the remote-reference processing procedure (Gamble et al., 1978), then they
were subjected to dimensionality analysis using the phase tensor method (Caldwell et al., 2004; Bibby et al., 2005). The
result shows that resistivity structure is two-dimensional, and its strike is’"N8530° E. The ATR2021 model along the
model line (N6C E-S60° W) was determined using the two-dimensional magnetotelluric inversion code (Ogawa and Uchida,
1996).

The ATR2021 model has different features between northeastern and southwestern sides of the surface trace of the Atera
fault. In the northeastern side, conductive region is widely recognized to a depth of 1,200m or more, in contrast, the south-
western side shows two-layer structure with a boundary depth of about 200m: shallower layer is conductive and deeper layer
is resistive. These features are well consistent with the electrical and porosity logging data at two boreholes (Matsuda et al.,
2008). Furthermore, these features are consistent with the results of the seismic survey. The upper boundary of the resistive
layer in the southwestern side is well coincide with the remarkable seismic reflector. We interpret the boundary suggests
the top of granitic basement. A flower structure exists near the surface trace of the Atera fault in the seismic section and a
near-vertical resistivity boundary is clearly recognized below it. We interpret this resistivity boundary is the subsurface fault
plane of the Atera fault.
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