第56回講演会
講演予稿集
昭和49年11月12日～11月15日
於 岐阜県穗積町中央公民館
日本地球電気磁気学会
<table>
<thead>
<tr>
<th>日時</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>11月12日(火)</td>
<td>9:30</td>
<td>10:30</td>
<td>第1会場</td>
<td>太陽風・惑星</td>
<td>第1会場</td>
<td>磁気圏・プラズマ波動</td>
<td>運営委員会</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>第2会場</td>
<td>中間圏・大気圏</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11月13日(水)</td>
<td></td>
<td></td>
<td>第1会場</td>
<td>磁気現象Ⅰ</td>
<td>第1会場</td>
<td>磁気現象Ⅱ</td>
<td>評議員会</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>第2会場</td>
<td>電離圈Ⅱ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11月14日(木)</td>
<td></td>
<td></td>
<td>第1会場</td>
<td>宇宙線</td>
<td></td>
<td></td>
<td></td>
<td>総会</td>
<td>特別講演</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>第2会場</td>
<td>古地磁気・岩石磁気</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11月15日(金)</td>
<td></td>
<td></td>
<td>第1会場</td>
<td>ELF・VLFⅠ</td>
<td>第1会場</td>
<td>ELF・VLFⅡ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>第2会場</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第1日 11月12日(火)

太陽風・惑星 於 第1会場 (10:30~12:30)

開会の辞
1-1 倉木勝久*, D.L. Judge**, R.W. Carlson**, A.L. Morse**（*東大理, **USC）
Interplanetary Hydrogen and Helium Glow: Pioneer 10 Observations
Results (12分)
1-2 板倉和也（九大理）準定常太陽風セクター構造と密接な関係を持つ惑星間空間帯の観測
(12分)
1-3 木村智信, 川見義大, 三木千枝, 河野宣之（電波研鹿島）太陽コロナ磁場による Tau
直線偏波の Faraday回転
(12分)
1-4 渡辺克（名大電研）太陽の活動領域と太陽風速度との関係 (12分)
I-5 寺沢敏夫，大村正義（宇宙研）Interplanetary Shock Wave による太陽宇宙線の Modulation — 衛星観測の解析（12分）
I-6 近藤一郎，長島一男，藤井善次郎（名大理）惑星間空間磁場の sector 構造と宇宙線異方位（12分）
I-7 大室登（東大工大）Jupiter Magnetospheric Configuration（12分）
I-8 大室登，森岡昭，近藤常（東大工大）Observations of Jupiter Decameter Waves（I）（12分）
I-9 森岡昭，大室登（東大工大）Observations of Jupiter Decameter Waves（II）（12分）

磁気圏・プラズマ波動 於 第1会場（14:00～18:00）

I-10 沼谷信吉（山形大学）シロパトスキー理論の再検討（8分）
I-11 山下喜弘（気象庁気象衛星）PC 1 動電場発生領域の磁気図電場（8分）
I-12 桜井宣（東大工大）Substorm—associated electric field variations near the plasmapause（10分）
I-13 坂下治（東大工大）コーレス型 E.L.F 放射に見られるサブストームの影響 I（12分）
I-14 竹下弘（日大工大，名大プラズマ研）Micropulsations and the Plasmapause（I）（12分）
I-15 佐藤哲也（東大工大）太陽風—磁気圏—電離層相互作用 I 電気回路表示（12分）
I-16 佐藤哲也（東大工大）太陽風—磁気圏—電離層相互作用 II 磁気圏風（12分）
I-17 大村正義（宇宙研）太陽フレーザーとオーロラ（12分）
I-18 木村善行，楠本弘毅（京大工）VLF ドップラー法による電子温度の測定（12分）
I-19 南部正宏（九大教養）Heating Mechanism of Ions in the Tail Plasma Sheet（12分）
I-20 王尾政（東大工大）磁気圏尾部内の粒子と波動（12分）
I-21 Kikuchi, H., H. A. Taylor, Jr., A. R. Deshmukh (NASA/Goddard Space Flight Center) Irregular Structure of Thermal Ion Plasma Correlated with PLF Electric Fields Observed from OGO-4 and -6 Near the Light Ion Trough（12分）
I-22 大室登（東大工大）Plasma Flows in the Earth’s Magnetosphere（12分）
I-23 野田善（東大工大）非一様プラズマの幾何学とその応用（I）—磁盤の考察—（12分）
I-24 南部正宏（九大教養）Negative Pressure Effect on the Alfvén Waves（12分）
I-25 山本隆（東大工大）Saturation of a Single Electrostatic Wave by Particle Trapping（10分）
I-26 山本隆（東大工大）Resonance Broadening Due to Turbulent Collision（5分）
I-27 安田正，松本登（京大工大）VLF トリガー・エミッションの計算機シミュレーション（12分）
I-28 岩手県、北川義英（阪南大学）一様磁場下における多重成分プラズマ内の横浜の伝播（1） (12分)
I-29 永野宏（岐阜大学）Kelvin–Helmholtz 不安定における有限電気伝導度と
Hall電流の効果について (8分)
I-30 永野宏（岐阜大学）電気気候境界におけるFLR–Kelvin–Helmholtz 不安定について（2） (8分)

中間間・大気圈（10:30～12:30）
I-1 岩塚泰浩（名大水研）成層圏エアロゾルとSO₂の酸化反応 (12分)
I-2 広野将和，藤原玄夫，坂部敏和（九大理）成層圏エアロゾル層の粒径分布と球形の機構
について (12分)
I-3 上山弘，丸山伸夫，岡野章一（東北大理）ブマン散乱断面の測定とその応用 (12分)
I-4 尾崎隆夫，岩上幹，近藤隆（東大理）B₃－S₃によるオゾン密度の測定 (12分)
I-5 萩原隆*，尾崎隆夫**，小川利雄**（* 東大工大，** 東大理）
成層圏・中間間のオゾン断面 (12分)
I-6 尾崎隆夫，岩上幹，近藤隆（東大理）大気球による成層圏のオゾン密度測定と比較実験 (12分)
I-7 早川幸男，飯島浩，伊藤浩史，松本敏雄，小野信良（名大理）
気球高度におけるO₃とCO₂の観測について (8分)
I-8 小川利雄*，尾崎隆夫**（* 東大理，** NASA/AMES）SST排気ガスによる成層圏オゾンの破壊 (12分)
I-9 小川利雄*，尾崎隆夫**（* 東大理，** NASA/AMES）
成層圏NOₓ，HOₓの日変化 (12分)
I-10 小川利雄*，尾崎隆夫**（* 東大理，** NASA/AMES）
成層圏酸素成分の観測分布モデル (12分)

中間間・大気圈及び乾燥圈（14:00～18:00）
I-11 尾崎隆夫（東大理）極圏のCO₂赤外放射の励起機構 (12分)
I-12 渡部邦彦*，寺本直美**，横山光義***（* 鳥取大，** 鳥取工大，*** 正会員）
XeO によるOIと6877の発光 (10分)
I-13 市川敏史*，大地登**（* 岐阜大学，** 岐阜大学教）
大気の光学的モデリングについて (8分)
I-14 佐藤章一，尾崎隆，中村正年（東大工大）夜間大気光のパルーン観測 (12分)
I-15 尾崎隆，丸野章一（東北大理）ナトリウム屑微細構造のライダー観測 (12分)
I-16 丸野章一*，尾崎隆，市川敏史**（* 東北大理，** 岐阜大学）
超高層大気温度の分光観測（II） (12分)
I-17 奥田光寿（弘前大学）酸素赤外／総観度比変化 (10分)
I-18 岩本泰信（名大水研）下部熱層のO，O₂分布と大気規模現象 (12分)
I-19 小川利雄（東大理）超高層大気組成のモデリング （12分）
I-20 福山賢（東大工）Diurnal Variations of Atmospheric Constituents
in the Lower IonoSphere
21 日 11月13日(水)

極域現象 I

1-31 鈴木裕明（東京大工）超低周波音波の観測結果
1-32 桑島正幸（地球気候）昭和記念一内陸地磁気2点同時観測(II)
1-33 平沢 彦男，鮎森 紘（極地研） Substorm と pi Pulsations
1-34 菅生高離，桝井 子（東北大理） Substorm Onset と Pi 2型磁気動力 (II)
1-35 高岡良右（兵庫医大） PCA時における極域地磁気異常
1-36 岩崎晃（相模工大工）日間風向向磁気強度と磁気圈デルに計算される極域磁気線との結
合の可能性
1-37 桑沢健（宇宙研）極地電流の惑星間空間磁場への対応性
1-38 桑沢健（宇宙研）極地電流の惑星間空間磁場への対応性 (II)
1-39 安原通史，小川健雄（*京教大，**,京大理）
高緯度の大気電場について
1-40 前田真（京大理）電場による極地電離層の風
1-41 前川慎一郎，前田真**（*京教大，**,京大理）極地電離層電流 (II)
1-42 Kawasaki, K. and N. Fukushima（東大理） A Simplified Mechanism
for Field-Aligned Currents from the Ionosphere
1-43 福島透（東大理）Field-Aligned Current と電離層電流とのつながりに関する問題(II)
1-44 飯島健（東大理） Polar Magnetic Variations: D Component
Characteristics
1-45 金田栄拓（東大理） Substorm の特性 (II)

極域現象 II 及び電離層 II

1-46 宮崎茂（電気研） 南極ロケットによる下部電離層の測定(II)
1-47 小川 志彦，森永隆，宮崎茂（電気研）ロケットによる南極電離層の電子密度ゆらぎの観測
1-48 永田美*，平沢 彦男*，浦沢美代子*，等松隆**（*極地研，**,東大理）
観測ロケットによる極域の研究 (II) 極光電子による電離層の電離
1-49 小口（東大理）オーロラの動特性II スケールに関与しない変動の整一性（12分）
1-50 永田武, 平沢健男, 鳥川勝（極地研）地上及び衛星観測に基づく南半球極光活動の形態学II（12分）
1-51 相泽和弘, 古見昭, 五十嵐信良（電波研）符号化パルス方式サウンダーによる電離層の地上観測（12分）
1-52 小山芳一郎, 平尾邦隆（宇宙研）污染電離の電子密度におよぼす影響（8分）
1-53 河島信樹, 矢守章, 佐々木達, 岡村昇一, 村里幸男, 金子修（宇宙研）K-9M-46号機による電離層プラズマの研究実験（12分）
1-54 山下哲弘*, 井上隆義** （*気象庁気象衛星, **京大理）地球風図の風系数分布（8分）
1-55 森洋介（宮崎大友）大気組成変化と電離層風（8分）
1-56 窪本稔, 小川寛（京大工）電離層F領域の周期変動とその解釈II（12分）
1-57 小木曾晃, 北村圭一（九大）極冠F領域電子密度と電場（長周期）（12分）
1-58 村沢利之, E2層ピークの標準的電子密度及び高さの計算式（10分）
1-59 Girija Rajaram（宇宙研）Characteristics of Electron Density and Electron Temperature in the Topside Ionosphere（8分）
1-60 Girija Rajaram（宇宙研）Longitudinal Dependence of Night-Time Electron Density Distributions in the Topside Ionosphere（8分）
1-61 井上隆義, 越塚吉（京大理）赤道域上部電離層の磁力風時変動（8分）
1-62 中村義勝, 澤村延夫, 西崎良, 永山幹敏, 北条尚志（電波研）
日本帰属の上部電離層における電子密度の線形分布（1967年, 1968年のデータから）（12分）
1-63 西崎良, 澤村延夫（電波研）プロトン・ヘリウム・エローの現象について（10分）
1-64 高橋忠利（東北万理）地下低エネルギー電子へのAnalytic Approach（12分）
1-65 竹内一, 今井浩, 和田雅夫（理研）放射線帯下電子エネルギー分布の空間依存性（12分）
1-66 大家寛, 森岡昭, 近藤真（東北万理）SRATS衛星におけるプラズマ計測（12分）

電離層II 第2会場（9:30～12:30）
1-30 大内光夫（電波研）電離層X線フレアに伴うD領域の増加電子密度の測定II（12分）
1-31 武井俊雄, 上山弘（東北万理）Ionospheric Effects of Energetic Electrons Scattering from the Radiation Belts. (I) Scattering Processes in the Magnetosphere（12分）
1-32 上山弘, 武井俊雄（東北万理）Energetic Electrons Scattering from the Radiation Belts. (II) Ionization in the Lower Ionosphere（12分）
1-33 及田久義, 上山弘（東北万理）D層のイオン组成（12分）
1-34 長野敏*, 木村善雄**, 澤保正喜*, 松尾敏郎**（*金沢工大, **京大理）K-9M-29号機による電離層観測値から下部電離層の電子密度分布の計算（8分）
1-35 槙池栄, 菅野徹（京大理）近距離伝播VLF電波電界強度の周期解析（12分）
地球内部 於第2会場（14:00～18:00）

1-45 佐野幸三（地球気象）気ポンピング磁力計による地球気振動測定結果

1-47 行武雄（東大土木）Sg流体による地球内部磁力誘導

1-46 佐野秀夫（岡崎大学）Filterによる周波数分析の考察

1-49 富川伸（東大物理）局地的地球気振動成分の分離の問題について

1-50 西田泰男（北大理）石狩平野における地球気流測報

1-51 瀬木明成*, 鳥井宏**, 鳥井豊 *, 宮脇隆一郎 **（*東大理, **鳥取大教養）

2-52 鳥井隆 *, 鳥井宏 **, 宮脇隆一郎 **（*東大理, **鳥取大教養）

2-53 瀬木明成*, 鳥井宏 ***, 鳥井豊 ***, 瀬木明成 **（*鳥取大教養, **東大理）

3-54 岩原一夫（地球気象）電気伝導異常の地表変化

3-55 Schwerer, F. C.*, 永谷英 **（*U. S. Steel 研, **理研研）

アポロ月岩石の電気伝導度 - 総括報告

3-56 森脇秀文（東大理）非定常乱流ダイナミクスについて

3-57 斉藤邦雄（東大理）地球内の物理的状態

3-58 小嶋隆（東大理）地球大気の起源（その2） - 短いスカラからのみた -

第3日 11月14日（木）

宇宙線 於第1会場（9:30～12:30）

1-67 森駒, 一橋村幸*, 安江新一, 剛坂修二, 赤羽重信（*東大理, **信大教授）

地下30 m. w. e. における宇宙線強度変化の観測 II

(12分)
I-68 一之瀬真興，森覚*，安江新一*（信大教養，*信大理）
地下50 m，w.e.における宇宙線強度変化の解析
I-69 千葉敏昭（岩手大教育）宇宙線中性子成分気圧効果係数の長期変動
I-70 齋藤常吉，石田信雄，斎藤順子*（福島大教育，*福島医大教養）
宇宙線十日変化と太陽活動度
I-71 安江新一，森村，長島一男*（信大理，*名大理）宇宙線強度変化の三次元的解析
I-72 小玉正弘，川村信吉，和田雅美（理研）宇宙線中性子変量計
I-73 藤井善次郎，近藤一郎，長島一男（名大理）宇宙線強度帯周期変動とKp-index
I-74 北村正博，池上豊志，小玉正弘*（気象研，*理研）昭和基地における宇宙線シミュレーションの解析
I-75 和田雅美，佐藤隆（理研，*香港中文大学）極中間子の大気効果
I-76 長島一男，上野裕幸，藤本和彦，藤井善次郎，津田正洋，林口文衡，花井哲大*，小島浩司*（名大理，*名古屋市街大）
乗鞍及び名古屋におけるSmall Air Showerの実験
I-77 長島一男（名大理）10^{11} - 10^{14} eVの一次宇宙線がつくるシャワーについて

古四気・岩石磁気 消第2会場（9:30～12:30）

I-69 田中憲文，河野康（東大理）磁気コントロールを使用した磁気消極
I-66 橋面建雄，宮崎品（山口大教育）米・コロンビア川玄武岩の磁性
I-65 永田武，杉浦浩治*（極地研，*東大理）大和隠石の磁気的性質
I-64 永田武，F. C. Schwerer*（極地研，*U.S. Steel研）
アポロ月岩石の磁性 - 総括報告
I-63 鳥居健之，足立信彦*，中村恒*（阪大基礎工，*泉北丘陵磁気測定員，*大阪府教委）遺跡の磁気探査 - 須賀古墳遺跡における一例-
I-62 広岡公夫，服部勇，伊藤政昭*（福井大教育，*福井県丸岡市）
丹後北郷古生産の古磁気
I-61 安田克己（阪大基礎工）白亜系における東北日本の平均的磁気傾斜の問題点
I-60 車野長，小場裕，弘崎隆治*（東大理，*電路工大）
磁気周辺の火山岩（白亜系）の古地域磁気学
I-67 車野長（東大理）古地磁気データの球面調和解析

総 合：於第1会場（14:00～16:00）
特別講演：於第1会場（16:00～18:00）
永田武（極地研）「南極観測の現状」
大林政（宇宙研）「日本の科学衛星」

第4日 11月15日（金）
ULT・ELF・VLF I 於第1会場（9:30～12:30）
I-78 宮崎光（東大理）磁気観測乱時の低線度地磁気脈動

（12分）
1-79 上田一，渡辺富也*（プリティシュ・コロンビア大学，*東北大学）
誘導磁力計のsensorとして使用されたair-core coilとhigh μ-metal core coilの比較 （12分）

1-80 Gerard Nourry, 渡辺富也*（プリティシュ・コロンビア大学，*東北大学）
Interplanetary Magnetic Field and Geomagnetic Micropulsations （12分）

1-81 村上裕（京大理）シューマン共振と平面近似について （12分）

1-82 桑原優光（名大電研）シューマン共振周波数の1日変化 （12分）

1-83 佐野和夫，山下孝子，太田幸一（名大電研）ELF带空電の波動インピーダンス測定 （10分）

1-84 早川正士，鳥倉信*（名大電研，*千葉大）Reflection Mechanism of ELF–LF Waves in the Lower Ionosphere （12分）

1-85 塚田利男（東大理）Magnetopause 附近でのELFエミッションII （12分）

1-86 早川正士，田中義人，大津仁助（名大電研）Morphologies of Low–Latitude and Auroral VLF His （12分）

1-87 大津仁助（名大電研）Ariel 3によるVLF Hisの発生に関する考察 （12分）

1-88 早川正士，田中義人，大津仁助（名大電研）Satellite and Ground Study of Magnetospheric VLF His Associated with Magnetic Storms （12分）

1-89 佐藤忠典，村上利光（電波研）衛星高度におけるVLF放射強度の経時分布I（8分）

1-90 松本耕，宮本貴夫*（京大工，*電波大）K-9 M-46 46号機によるプラズマ波実験（速報） （8分）

ULF-ELF-VLF II

1-91 岩井章，岡田敏英*（名大電研，*群大工）低緯度ホイッスラーの入射角・方位角及び偏波の観測結果—单一周波数による観測— （12分）

1-92 岩井章，岡田敏英*（名大電研，*群大工）低緯度ホイッスラーの入射角・方位角及び偏波の観測—広帯域方式への拡張— （12分）

1-93 岩井章，岡田敏英*（名大電研，*群大工）ホイッスラーの分散の実時間観測方法 （8分）

1-94 内藤悠史，加藤達，荒木健*（京大工，*京大理）VLF標準電波（NWC）のホイッスラー・モード受信 （12分）

1-95 早川正士（名大電研） Tunneling Transmission Through the Equatorial Lower Ionosphere of ELF and VLF Electromagnetic Waves （12分）

1-96 早川正士，田中義人，岩井章（名大電研）Properties of Low–Latitude Whistler Ducts Deduced from the Rocket and Ground Observations （12分）

1-97 鶴田浩一郎，渡辺勇三，西田篤弘（宇宙研）カナダにおけるホイッスラー観測（序報） （12分）

1-98 佐藤忠典，村上利光，田中義人*，岩井章*（電波研，*名大電研）
衛星・地上VLF同時観測II （8分）

1-99 佐藤忠典，上澄実（電波研）衛星で観測したホイッスラー・エコーから求めたホイッスラダクトについて （10分）
第1会場
Interplanetary Hydrogen and Helium Glow: Pioneer 10 Observation Results

Suzuki, K., Geophys. Research Lab., Univ. of Tokyo
D.L. Judge, R.H. Carlson, A.L. Morse, Dep. Physics, Univ. of Southern California

The Pioneer 10 deep-space probe carrying an ultraviolet photometer was launched on March 2, 1972. The uv instrument is a two channel photometer designed to measure the interplanetary and Jovian hydrogen and helium glow at λ216Å and λ384Å, respectively. The photometer has been measuring the resonance scattering of the solar H and He lines along the ecliptic plane from 1 AU to 5 AU. The present data on the Ly-α radiation indicate that the maximum intensity occurs near the ecliptic plane and that the intensity is symmetric with respect to the plane. These results are in agreement with previous OGO 5 Ly-α measurements. We have compared the present data with several model calculations of the neutral wind to evaluate the parameters of the interplanetary neutral medium.

References

J. L. Bertaux, A. Ammar and J. E. Balsam, Space Research XII, 1559, 1972
前回の報告で指摘された、2つの問題点、つまり 1) 電流層内での電流の流れの方向、 2) 電流層の Leading Edge が電流層の吹きだまりとなり得るか否か、について検討した。

1）について明らかになった事は、電流は観測方向に流れている。という事である。
前回と同様、雲天磁面と電流方向を同一視しているが、電流層が形成されている時の Main field が、観測磁面内にあるとは考えないので、再検討した結果上の差が見られた。

2）について言うと Leading Edge は電流層の吹きだまりに近づいていないだろうという事である。理由は、Total Pressure (e.g. 10.7 cm) が Leading Edge で他の部分より大きめであることがある。そうすると、電流層は、たまに Local に作られる、その厚さは電流層の厚さで決まる電気伝導度の左右されているからであろう。
もちろん、Kelvin-Helmholtz の Instability が積極的に電流層を壊しているから、その側面については問題があるか、全体の 65% は積極的に壊されているからではない事が山了した為、電流層内での電気伝導度の役割は大きかったろう。
1-3

かに星雲直線流れの太陽コロナ磁場による
フラデー回転（工）

高橋留雄, 川村繁大, 三木十城, 沼野定之（電気研開部）

昭和37年, 73両年に受験の難度をしめ, 今回もかに星雲太陽コロナに深接する.
6月15日を中心に6月10日から6月20日までの1日間の間にん, 53帯と64帯と観察を
おこした. 研究目的は星雲を含む観測用太陽コロナ磁場の状態を含め星雲の場面
のフラデー回転を用いて推定することである.

今回観測の新しい点はかに星雲の追跡とそのback groundの追尾との間隔をこれまでの
数日間から1日・24時間に短縮してback groundの再現性を高めたことにある. この結
果, 前に述べた観測と同様に耐えられ, な4帯の観測は観測が安定を表したものであるが, な6帯の
方は再現性が著しく劣っており, たとえ, 島度の高い結果が得られなかった.

特に次の結果として(下記参照)

(1) 太陽に接続していない6月11, 17, 19, 25, 27, 29日, 6月30日, 7月1日の磁場位置, 磁気率の不明確な
 予測と正しいとされ140°と250°である.

(2) 観測時間にして2時間目2万5000, これは観測位置角で推定すると20スケールとなる.

(3) 磁気位置角の変化は6月15日までは増減傾向であるが, 6月19日より前前日にして,
 20°くらいう常で増大している.

(4) 昨年まで同様であった, 6月17日における観測位置角の変動は今別方法が起こった.

現象として観測に合わせ, 6月15日, 26日, 28日の観測は各月の増大である. この時期
の太陽表面感度は比較的安定しており, ただし後半には変動した機能に入り, 太陽表面の
磁場と比べると, 太陽の光度との関連を太陽の自体に伴うかに星雲の従属面磁場の
positive面磁場からnegative面磁場に移動していくことがわかる. 前述の推定すると30°
の磁気位置角の増大は約8 Gaussの太陽表面磁場の減少を示していた. これは観測の太
陽表面磁場の変動およびそれから来ている. このことから, かに星雲の通過する40日近の
太陽コロナ磁場太陽表面磁場と一致していることがからある.
太陽の活動領域と太陽風速度との関係

渡辺 富
名古屋大学空間研究所

本年春の学会の時で、太陽風の速度と太陽の日珥弧の活動の関係が明らかに強く示され、γ線の強さが高まるほど、さらに太陽の活动領域が活発化することは、一般の関係が存在することをを報告したが、活発領域上に突出された日珥弧の強さは、特に、離れた星と太陽の活動領域の関係について検討したい。

この問題を解くためには、日々の観測の例があるので、見逃すことがない。1941年9月から5月にかけて同一の活動領域が大気に接触したと見なして観測された。この領域はMcMath Nos. 12293、12325、12357として記録され、さらにCentral Herion PassagのCIPは23 April、28.9 April、25.6 Mayであった。この活動領域から出来た日珥弧のPomeroyとし、さらに、scintillationによって観測された。

この期間のCIPのうち、特に23.5 km/secの速度の速い太陽風が観測された。この日珥弧のCIPには、太陽風の方向を示すものと、350 km/secの方向に太陽風を観測された。しかし、この期間のCIPには、高風の太陽風速度は再びとの、350 km/secのものに至っている。

この太陽風速度の変化は、活動領域の位置とさらに変化に対応しているようであるか。最も関心が高まるのは、この活動領域の光球面構造の変化に示される。すなわち、太陽のCIPに見える太陽風の構造は、日珥弧の活動面は観察されている。さらに、このCIPにては、日珥弧の構造は、特に、活動エリアでの観察されている。さらに、このCIPにては、日珥弧の構造は、特に、活動エリアでの観察されている。さらに、このCIPにては、日珥弧の構造は、特に、活動エリアでの観察されている。さらに、このCIPにては、日珥弧の構造は、特に、活動エリアでの観察されている。

以下のような観点により、前記の観察結果を検討した。これらは以下のようないわゆる観察が得られた。

(1) 太陽の活動領域の関係をみ、活動領域からの背後の太陽風が放出する。

(2) 多数の活動領域の関係をみ、活動領域からの高風の太陽風が放出する。
Interplanetary Shock Wave による宇宙風速の Modulation

西村敏夫 大野正敏
東大宇宙研

Interplanetary Shock Wave (Ips.W.)の通過に伴って、低エネルギーのP、α粒子（0.1~数MeV/nuc）のFluxが顕著な増大を示すことが観測され、これはこの増大についてのタイプがあることが認められている。

1) Energetic Storm Radial Events (ESP): 1971年12月4日、6月15日、12月27日、7月14日
2) Shock Spike events: 1970年6月19日、10月22日、12月4日、6月15日、12月27日、11月12日

それぞれの現象に対する研究で、磁場はFlux変化という量を媒介する重要であることが示され、例えばP（例えば、Gleason et al. 1973）を対象とするものである。観測したFluxの変化は宇宙風速の変化に応じて解析を行った。

30 MAY 1967

Proton flux

Al 04-5 Mev
At 8 - 16 Mev
Spectral index

Bor Shock Ceme

*Gleason et al 1974 G.R.L. 1(2), 65
感度の変動についての

図1は、IMFのTOWARDとAWAYの差を示しています。G、W-E、2W-2E、3W-3Eの各成分について、TOWARDの日がAWAYの日よりも強度が大きいことが見られます。TOWARDとAWAYの間で異なった特性を示すことにより説明される。
The jovian magnetospheric configuration proposed at previous meeting\(^1\) has been investigated from the theoretical base with the Pioneer-10 data. The plasma in the magnetosphere is distributed in a disk form, due to a high centrifugal force, with density

\[N_j = N_0 \exp \left\{ \left(-1/ \sqrt{z^2 + r^2} \right) (GM_j M/KT) \right\} \]

where \(z \) is the distance from equatorial plane, \(r \) is the radial distance, \(KT/GM_j M \) is the equatorial scale height. The plasma is flowing into the radial direction.

The magnetic field in this region is expanded in radial direction following \(1/r \) relationship; this configuration is also affected by the plasma flow. The distribution of high energetic particles (E > 3MeV) that have been detected by Pioneer-10 in the equatorial disk can be explained as a result of this magnetic field configuration. Origin of the acceleration of these energetic particles is attributed to the electric field in the turbulent state of the magnetosphere.

The interaction of the solar wind with the plasma flow reveals two remarkable features; the first is the case at front where the variation of the solar wind is largely shift the balancing point, and the second is the case at tail where the solar wind effect makes additive effect on the plasma flow.

1) Oya, H., Jupiter Magnetosphere-I, 54th Meeting of Japanese Society on Geomagnetism and Geoelectricity, pp. 3.
Observation of Jupiter Decameter Waves (II)

H. Oya, A. Morioka and M. Kondo
Upper Atmosphere and Space Research Laboratory,
Tohoku University

The Jovian decameter waves are generated at the polar ionosphere of the planet in the form of the electrostatic electron cyclotron harmonic waves (ESCHW) at the source region. This ESCHW waves are converted into the electromagnetic waves in the processes through the Jovian ionosphere and the magnetosphere.

The origin of the turbulence that generates the ESCHW is largely related to the interaction of the magnetosphere with the solar wind and the satellites. The decameter waves thus contain informations relating to the turbulent ionosphere and the agencies that produce the turbulence; and also the decameter waves include the informations on the magnetospheric configurations.

The projects for the observation of the Jovian decameter waves are made as has been given in table 1. The J-1-C project has been planned to establish the pointing of the decameter sources using the interferometry technique.

The dipole antenna system has been made as given in Figure 1. These are used to measure the phase path difference through the receiving system given in Figure 2. The receiving system employed parametric amplifiers using saturable core-transformer. By sweeping phase differences, this interferometer system can sweep all the sky area and is able to identify the decametric source for the intensity larger than 10^{-23} Watt/m²Hz in frequency range from 18MHz to 24MHz.

<table>
<thead>
<tr>
<th>Year</th>
<th>Projects</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>J-1-B</td>
<td>10MHz, 15MHz, 22MHz, 25MHz</td>
</tr>
<tr>
<td>1975</td>
<td>J-1-C</td>
<td>High gain, Pointing</td>
</tr>
<tr>
<td>1976</td>
<td>J-2</td>
<td>Polarization, 22-30MHz Wide</td>
</tr>
<tr>
<td>1977</td>
<td>J-3</td>
<td>km-range Base line</td>
</tr>
<tr>
<td>1979</td>
<td>J-4</td>
<td>500-1000km range Base line</td>
</tr>
</tbody>
</table>

Table 1

Figure 1

Figure 2
1. 序
木星は太陽電波をしのぐ強力なデカメータ波を発射していて、これは過去20年間にわたったり電波天文学の分野として研究されてきたが、原因は明確にならなかった。そこでこれらのデカメータ波の原因をプラズマ物理学の観点において、新たに木星を太陽風の支配下にある巨大な磁気圏としてとりあげ、木星デカメータ波と木星の極域電離層の構造、太陽風と木星磁気圏の相互作用の関連。さらにIo衛星の磁気圏プラズマとの相互作用等。磁気圏の物理を研究する上でのプローブとしてとらえる方向で研究を開始した。

2. J-1-B受信機システム
第1期のアンテナ系の設計、PepAmpの試作の経緯を経て、J-1-Bと名付けた40米波帯の受信機の実施に入った。このJ-1-Bシステムのブロック図を第1図に示す。まず、(a) 受信周波数は24MHz、23MHz、22MHz、20MHzおよび18MHzの各4波とする。
(b) SN比はPep-Ampの出力を-18dB、コンピュータ制御を含めると-8dB、Pep-AmpのSN比となっているが、現在更に改良を進めている。
(c) 常磁器は140MHzおよび5KHzとする。

3. アンテナ系
会議者による半波長アンテナ系に一つのレフクードユニットを附着している(第2図参照)。指向性は方位角方向に関して60°を示し、天体の南中時に最大となる。

4. 観測結果
まず通過をみて木星電波のWindowを見出す作業を開始した。J-1-Bシステムは現在20dBに達する銀河中心からのデカメータ波を観測している。アンテナ系は約10dBとなっている。観測の限界は105ノルト40MHzまで20～18MHz帯のJupiterのパルス時の観測が期待できるデーター整理中である。
磁気圏における電場の空間的および時間的変動の研究を目的とする。本研究では Pc1型磁気圏電場のdynamic spectrumの微細構造の時間的変化を調べることによりplasma-pause近辺でのsubstormに伴う電場の変動を考察することを目的とする。解析は、高感度観測用Osagawa（多=28.3, R=20.6, d）で観測したPc1型磁気圏電場の資料を基にして行った。観測の結果はsubstorm phasesとの対応関係を図に示してある。これらの結果、substormに伴う電場の変動はsubstormのexpansion phaseでは西向きを示し、電場の極はsubstorm onsetと共に増大し、expansion phaseの終わり近くで最大（約10 MV/m）になり、recovery phaseに入ると同時にpolarityが西向きから東向きに変り、recovery phase中変動のない期間があるという結果が得られた。この結果は他の観測（人工衛星、パルーン、VLF等）と観測された電気圏電場のsubstormに伴う変動の結果とよく一致した変動であることがわかる。
1-13 ユーラス型で下放散の発生とサブストームの関係

林幹治 東大護

ユーラス型で下放散の発生が磁気圏周辺付近での電子サイクルトロン不安定性によるという考え方は多くの観測事実により支持されている。電子サイクルトロン不安定性による波の成長は、Magnetospheric aerosol-tracerの応答での高エネルギー電子の発生、およびpitch angleの電子が観測されていないことによる次元数のpitch angleの特性、さらに波の位相速度を決めるのに重要な役割をする電磁場より誘導される低エネルギー電子の量が重要な役割になっている。これらのうち、特に電子は磁力線によって入射されるものであるが、他の天体が磁気圏の偏角の影響を受けて大きく異なる。さらに、エネルギーによる価格はサブストームの発生の時間スケールである。低エネルギーのもの高波長がサブストームの発生と連関するというような時間スケールを示すことができる。このように、観測からサブストームがchorusにすぎず2つの時間スケールの効果について示唆されることを考える。

地表上のchorusの観測結果を有するもので観測のために、そのようなサブストームとの関係を調べる。観測点の周辺気圏の形（HT）、AL indexの時間変化AL（d, MT）である。ALの値をdMTで示す。ALは磁気圏の強度の1次時間変化最大値の値をC（f, d, MT）とする。ALは第二、Cの値とALの時間変化を示し、Cは磁気圏の強度の1次時間変化最大値の値をC（f, d, MT）とする。CはdMTで示す。（この情報）

R（d, d, MT）= R（d, d, MT）+ R（d, d, MT）

これはlocal timeのMTのchorusの強度の1次時間変化をALとの相関係数を調査することを意味する。図に示す。MT=3、6、9、12、15、20、21、23、40のRの値をプロットした例で2ヶ月間のデーターが使用されている。Rの値は数値0.5程度で良いが、ユーラスの発生にはいくつかの要因がいることを考慮すると、特にRの値が注目されており、①MTが直交する付近にならないときMT=3、6、9、12、15、20、21、23、40のchorusの発生が見られ、②MT=3、6、9、12、15、20、21、23、40のchorusの発生をchorusの強度の相関係数があることなどがわかる。Rの値が小さいことについては、観測の進歩ないし工夫をみる必要があるにもかかわらず、個々の例を示し、その理由やその他の」という観点で考察している。
MICROPULSATIONS AND THE PLASMAPAUSE

H. Kikuchi
New York University

ABSTRACT

Irregularities and instabilities associated with the plasmapause and their role in geomagnetic micropulsations are discussed, based upon satellite and ground observations and an inference from the theory and laboratory experiments of an inhomogeneous plasma together with a combined drift and surface wave concept. The importance and role of the plasmapause and associated plasma irregularities may be twofold, as a possible source mechanism for short-period micropulsations and as a hydromagnetic waveguide. Further close correlation between plasmapause-associated irregularities, the proton ring current and short-period micropulsations indicates the possibility of a combined effect of universal and cyclotron instabilities.
In the first part, we give theoretical guides for simulating the coupled magnetosphere-ionosphere system in terms of electrical circuits. The magnetosphere-ionosphere system is divided into three domains: the ionosphere, the outer magnetosphere where a process such as magnetic field line reconnection can take place, and the intervening medium which we term the passive magnetosphere. It is shown that the passive magnetosphere is well-represented by transmission lines for signals travelling both along and across the magnetic field, and that generally the ionosphere simply acts as a passive medium through which the magnetospheric generator drives a Pedersen current via upward and downward field-aligned currents. On the other hand, it is shown when the ionospheric density is locally enhanced (or decreased), the ionosphere is activated and bears a local generator across the enhanced (decreased) part which can drive a pair of field-aligned currents up into the magnetosphere.
The outer magnetosphere is studied as giving rise to field line reconnection. The reconnection process is reviewed from a standpoint of drift currents, and it is concluded that it is the curvature current counteracting the neutral sheet current which promotes the reconnection process. In practice, reconnection must take place in a finite domain on a plane perpendicular to the magnetic field, and because of this finiteness, space charges carried by the curvature current accumulate on both boundaries of the reconnection region. It is then argued that a conductive layer such as the ionosphere at the foot of field lines neutralizes these space charges via field-aligned currents in the course of the reconnection process (図4). With this argument, the dayside reconnection (図2) and the tailside reconnection (図1) as the causal mechanisms for magnetospheric substorms and auroral breakup are described, with special emphasis on solar wind control of the dayside reconnection and the ionospheric control of the tailside reconnection (図3).
太陽フレジャーとオーロラ変

太林辰威
東京大学宇宙航空研究所

太陽フレジャー現象の多くの点で地球磁気圏内に起きるオーロラ現象と類似性をもっている。フレジャー・エネルギーの源は太陽光球面でのプラズマ運動（対流、回転）にあり、それが活動域の磁場エネルギーとして貯えられる。このため、フレジャー活動は地球磁気圏内の電流によって保持されているが、その電流が磁気の変形を引き起こす場合、フレジャーのプラズマ不安定性によって切断されると、電流回路は電気伝導率（Crawling conductivity：$ \sigma_c = \sigma_\perp + \sigma_\parallel$）の大きい領域を経由して閉じ、強い電流ジェットを形成する。これにより、地球磁気圏の電流不安定は異常抵抗効果による粒子加速作用をもたらし、また電流ジェットは電気伝導率の変動を誘起し、このようなフレジャー・エネルギーやの蓄積・解放過程はオーロラ現象理論に応用することにより理解されることを明らかににする。
VL Fドップラー法による電子密度への測定

木村健根 植木弘毅

我々はEXOS-B衛星を利用して、ionization ductの位置、大きさをモニタ－する「ダクトモニタ－」を搭載する計画である。このモニタ－は、地上の安定したVL F局信号のドップラーを測り、その大きさから波の伝播モードを決定してダクトの形状を推定するものである。コールドプラスマ中のRay Tracingによると、ダクトが存在しなくて、ノンダクト伝播をした場合、発射点の反射面に到達する波は、wave normal angle θとresonance cone angle θresにほぼ等しい角度で伝播するため、かなり大きな屈折率をもつ。しかし、波の大きさを考慮した場合の分散関係は、θresにおいてもコールドプラズマのくみに屈折率は有限大となるが、θ＝θresとなっても屈折率は有限大であり、θが大きくなるとともにLamb波がしあがる。そのため、衛星で受信し得る波の屈折率には上限が存在し、それは電子温度の関数となる。Collinsによっても同様の効果があるが、今の場合は無視できる程度である。そこで、受信されたドップラーシフトの大きさを上限からそれを対応する屈折率を求める、他の技術による測定された電子密度と等価の精度を用いて、測定された値を仮定すると、電子温度を推定できる。

波の回波数をf, ドップラーシフトをdf, 屈折率をε, 卫星の速度をvとし、速度ベクトルとwave normal angleのなる角をθとすると、

\[df = (v/c) f \cos \theta \]

と表す。Wave normal angle θはプラズマ回波数f, サイコロトロン回波数f0で決まるθresに等しく、かつ磁気子が面内を伝わっていると仮定すると、衛星の位置等から得られる、θから求まる。屈折率が大きいノンダクト伝播では、θ＝θresと仮定しても大きな誤差はない。

Maxwell方程式を電子プラズマを仮定してオーバーに解いた、電子の速度をvとし、その運動方程式を解くと、定常解を求める。vを群速度とするとき、電子の運動エネルギーを得られる関係。

\[\omega = k_z v_g = k_z v_p \]

を用いて、群速度方向（エネルギー伝播方向）での波長係数 k_z が求められる。k_z は電子波が伝播する時に、電子の放出する電磁波の速度である。図1は規格化された波長係数

\[K_z = (\omega / v_p) (c / v_g) = (c / \omega_c) k_z \]

とプラケース（K=1, 10^n, 10^{-n}）として、電子密度 Te の関数を示したものをある。屈折率の上界を求める k_z を仮定すれば、図1からTeが得られる。k_z は電子密度n_eの変化率が2倍程度しか変わらないので、K_zとTeの関係は、数値計算をおこなうより、電子密度Teの近似の分散関係式からいても、ほぼ同一の結果が得られる、このような仮定をする時はStatic wave に近くなっていると考えられる。

[図1] 屈折率と電子密度の関係

（この図は、k_z = 3, f / f_0 = 0.5の時の例であるが、プラケースが変わってもn_eの値が変化するだけなら、図中の直線形には大きな変化はない。）
南部 元玄
（九大・数理・物理）

スペースのプラズマは熱平衡からずれた状況であり、特に孤立したプラズマのエネルギーレベルが顕著化している。スペースのプラズマのエネルギーレベルは安定であるが、宇宙の場によって乱れた状態になっている場合がある。これらの場合は通常のプラズマの物理現象理論とは逆の形になっていると考えられる。だから、いかにして乱れた状態に移るかを理解してスペース・プラズマの変状を調べることは重要である。すなわち、VLF, ELF, …等の脈動現象は、より直接に乱れの生成を示していると考えられる。これにより、脈動の生成のためのモードを探索してより非線形性を高次まで摂動できる。この方法は、数理物理学としては面倒かもしれないが、自然現象の発生においてもまた一部に観測されることもある。

1) Weak turbulence elementary process; Nakamura
2) Trapping; Nakamura and Mi
3) Orbit modification (Turbulent collision); Depree, Haursch, Richter, and Tsutsumi
4) Nonlinear frequency shift; Ichinaria

以上のように、エネルギーは大規模にエネルギーを蓄積した状態であるが、これに伴い、空間を形成する。空間が形成されたとき、脈動の発生のためのモードを探索し、より非線形性を高次まで摂動できる。この方法は、数理物理学としては面倒かもしれないが、自然現象の発生においてもまた一部に観測されることもある。
磁気圏尾部内の粒子と波動

玉尾 政
（東大物理）

磁気圏尾部に発生した波の発生処で、それに伴う粒子の輸送、読者等の機構を明らかにするために、より現実的なモデルに立ち出す基礎理論を考察して行く必要がある。波の発生においても、それ自体が安定する程度を条件として安定に発生していた感が強い。例えば、Orrbett-Neub 見方による、磁気圏尾
分布に対する対流の結果から得られる外部磁気圏の粒子エネルギー分布、温度異方性等は、ねれも Whittler, cycleeother 波の安定条件を充実させることが Cowley 等は指摘している。Tenero 不安定の条件は、\(A_{T} = (T_{L}/T_{s})^{1/2} \geq 3 \) とされ、これより得られる外部分布における温度異方性等は、しきい値の条件である。特に \(A_{T} \) の値は重要であり、より現実的なモデルに立ち出すには、以下の要因を考慮しつつ行く必要がある。

1. \(T_{L} \) 値が大きい場合（2×10^{-2} 以上）での波の発生の可能性。
2. 周期的に磁力線の変帯が大きい領域
3. 大規模な電磁場による粒子分布の再配列。Alfvén 層の附近では電場ドリフトと磁場によるドリフトが同程度とならないので、粒子分布の非一様性が強くなる。

今回、特に（3）の時間スケールの長く大規模電磁場が存在する場合の波動の発生について考えること。流体モデルと等価体模型の比較検討も問題になる。
IRREGULAR STRUCTURE OF THERMAL ION PLASMA
CORRELATED WITH ELF ELECTRIC FIELDS
OBSERVED FROM OGO-4 AND -6
NEAR THE LIGHT ION TOUGH

H. Kikuchi, H. A. Taylor, Jr, and A. R. Deshmukh
NASA Goddard Space Flight Center

ABSTRACT

Direct measurements of latitudinal distributions of thermal ion plasma in the topside ionosphere from OGO-4 have revealed a distinct variability in ion composition and concentration. Poleward of the light ion trough, the variability appears to be pronounced, exhibiting structured, patchy regions of rapid plasma fluctuations. OGO-6 ion spectrometer data further support this evidence of plasma irregularities and suggest a correlation with VLF-ELF electric fields near the trough zone. Among the results from a broad-band detector (20 Hz–1 kHz) and two narrow-band receivers at 200 kHz and 500 kHz on OGO-6, the 200 kHz signal level correlates better than the 500 kHz level with the ion data, and the broad-band intensity best correlates with the fine structure irregularities. A closer correlation of ion and ELF rather than VLF data is indicated by a new finding of continuous, intense banded ELF emissions below 1 kHz in a band (0.02–15 kHz) of sonograms, suggesting that in some cases rapid thermal plasma fluctuations are related to ELF electric fields or emissions observed well below the VLF lower hybrid resonances. An interpretation is presented, based upon the size of the small-scale plasma irregularities, possible ELF radiations related to soft and/or hard electron precipitation and a theory of Čerenkov radiation in an ion plasma.
PLASMA FLOWS IN THE EARTH'S MAGNETOSPHERE

H. Oya
Upper Atmosphere and Space Research Laboratory,
Tohoku University, Katahira, Sendai 980

Existence of the high speed plasma flow (1) with the velocity range from 100 km/sec to 300 km/sec in the outer magnetosphere is recent topic of the studies on the magnetospheric plasma. An interpretation of the high speed plasma flow near the plasma-pause at the dawn side has been proposed. When the solar wind includes an enhanced south component of the magnetic field, the magnetospheric tail region, in a position further than 10R_e, is subjected to the entrance of the solar wind into the plasma sheet. There are electric fields in regions close to the tail cusp due to the perpendicular component of the plasma flow with respect to the magnetic field. This electric field is transported into the polar cusp area where the plasma particles make drift motion (see Figure 1). As the result of this drift motion plasma particles are injected down into the area located very close to the plasmapause.

Disruption of the plasma flow with interaction of the magnetic field irregularity can be a source of the plasma turbulence where the strong electrostatic electron cyclotron harmonic waves are generated.

Figure 1.

(1) Oya, H., Plasma flow hypothesis in the magnetosphere relating to frequency shift of electrostatic plasma waves, Submitted to JGR (1974).
非一様プラズマにおける幾何学とその応用 (I)
——基礎的考察——

野田 彰
東京大学 理学部

1-23

非一様性の非一様性（この時間・空間的尺度で、それぞれ丁・し・じる）が、波の周波数の波長の比によって異なる場合（半径で、レーザー光）に、特に、以下のような関係を満たす波動の伝播について考える。

\[H(x^a, k_a) = H^{(a)}(x^a) k_a k_a + k_0 = 0 \quad (\text{波動の関数}) \quad (a, b = 0, 1, 2, 3) \]

(\(n_{\alpha} k^a = n^a k \) の場合は適当な座標変数で、\(x^a = x^a_{\text{新しい}} \) にできる)

座標系 \((x^0, x^1, x^2, x^3) = (t, \mathbf{x}) \)

4-波数 \(k = (k_0, k_1, k_2, k_3) = (-\omega, \mathbf{k}) \)（変換は未定義）

-

例

Lagrangian 波

\(\omega^2 = \omega^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)

\(\omega = \psi' k^k \)

\(\omega = \psi^2_{\text{波数}} + (x^2_k k^k) \)
Negative Pressure Effect on the Alfvén Waves

斎藤充宏

宇宙の物理において、プラズマの圧力という概念は、その物理的な意味は必ずしも明確ではない状態のまま、音速（c, M, 0), モード（E, Σ), ボーンズ分布（N, Π) へと帰属されて来てた。

本論文では、圧力の物理的な意味を持たせ、かつその値を正にとし、時間に関して整理された。その結果、圧力場は量子論から、「ホール」に対応するものである。これに対し、安定化に伴う不安定現象は、ホールの発生を表していると考えられる。これに対し、安定の圧力場の不安定現象は、「正粒子」の発生の結果、生じている事になる。

これらの結果は、見落としを恐れるが、可とう考え得ると、安定性の対象性の意味があらゆる事に役立つか、特に Space Physics における様々な現象（VLF, ULF, MUF）は、さらに観察され、さらに、大気圏という中で発生するが、これに加えて、安定性の保持は、その場合、ホールが発生している。これらのプラズマの波の現象を伴うと、例えば、ヘリウム、水素、ロスコーン型、アンチロスコーン型、ドリフト（非一様）型の不安定現象が示している。しかしこれらは、安定粒子の圧力から見ると、現状となっている為、変動の増減が見えないと示している。

不安定現象の記述は、他の半導体チームから見た事とは、全く被せて事になる。ホールから見ると、例えば、ロスコーン不安定性は、Gn と R の条件である。これは欠陥粒子が正に T を満たしているから、そして波数をホールの数に比しておける。

安定化の考察を用いて見ると、この定義の意味が示され、単に、ロスコーン、アンチロスコーン不安定性とは異なる、プラズマ物理としての Space Physics への意味の発見がある。例えば、Space Physics での波の発生を決定する時、特に R-mode の現象を任意にとするところに注目し、1つは、正粒子の振動、または、ホールの発生、またこれに影響を与えるもの、または、プラズマの安定性、安定性が示しているもの、プラズマの現象の一部が示しているものを考察している。

本論文の考察が準し不正に、プラズマの現象は、その変化から再度考察を再検討し、Space Physics の話題の現象を示す、ホールの振動が見られるようにある。当面は、その物理的な意味を定義し、推定し得る手掛かりである。

文献

* 完全に、対応することは言えない。若干の差異は存在する。
前言のとおり、電子・プラズマを考える。定常解のプラズマは静電場を静電場E(t)\(=E_0 \exp(-i\omega t)\)と仮定していきること。本来の有限振幅波を考慮するプラズマの解を解くことが必要。同様に、定常解のプラズマを考える。定常解のプラズマを考える。
Resonance Broadening due to Turbulent Collision

山本 陸

弱く乱れたプラズマ中では、乱流による粒子の平均の動きが大きくなり、resonanceの入が起こると、よく知られた現象である。（注 1）一方、乱流状態からの加えたり残念なperturbationは、乱流による確実効果を及ぼす。（Ishihara, An Introduction to the Theory of Plasma Turbulence）このturbulent collisionは、perturbationと粒子のresonanceの入を扱うことができる。本稿では、以上二つの見通しの一つresonance broadeningがある末に述べ、同じ表現形式をとりうる手法を数学的に示した。

Birmingham & Dennis (1972) は静止流の乱流に対して

\[\int_0^\infty \frac{dz}{z} \cos \left((\omega - \omega_k) z - \frac{\omega}{2}
ight) \frac{\partial}{\partial \omega_k} \delta (\omega) \exp \left[- \frac{\omega}{2} \right] \exp \left[- \frac{\omega - \omega_k}{2} \right] \frac{\partial}{\partial \omega_k} \frac{\delta (\omega)}{\delta (\omega_k)} \right] \]

これがresonance functionに等しい。correlation timeが十分に長ければ、resonance functionは時間的に行ると考えられる。

\[\int_0^\infty \frac{dz}{z} \cos \left((\omega - \omega_k) z - \frac{\omega}{2} \right) \delta (\omega) \exp \left[- \frac{\omega}{2} \right] \exp \left[- \frac{\omega - \omega_k}{2} \right] \delta (\omega) \]

ここで\(\delta (\omega) \)はquantumnessのdiffusion tensor

\[\pi \sum_n k_n E_n^2 \delta (\omega - \omega_k) \]

一方、Ishihara (1972) によれば、乱流状態（\(f_r, \omega, E_0, \theta_c, \theta_p \)）に近づくことができ、perturbation（\(f_r, \omega, E_0, \theta_c, \theta_p \））のフーリエ成分（\(f_r, \omega, \theta_c, \theta_p \)）は\(\delta \)の強度に関する。Imaginaryプラズマ

\[-i (\omega - \omega_k) f_{r, \omega} + \left(E_0^2 \frac{\partial \theta_k}{\partial \omega_k} \right) \theta_c + \frac{1}{2} \theta_p \frac{\partial \theta_k}{\partial \omega_k} \]

\[\sum_n E_n^2 \frac{\partial \theta_k}{\partial \omega_k} \]

（\(\theta_k = \exp \left[-i (\omega - \omega_k) \tau \right] \right) \]

\[\frac{\partial \theta_k}{\partial \omega_k} \]

がresonanceの近傍で一様に分布することに注目して計算が可能で（実験スペンジルに対して）③のresonance functionを含む解が導かれる。
地球磁気圏を仮想するホイール・トライレーと、高エネルギー粒子流との相互作用により動かされたレベル・エミッションの理論的解明を目指して、我々は計算機によるシミュレーションを進めている。その過程での深さ平均電磁場を時間発展上からの波動の相関の分析を含んでいる。我々は、再度振幅の相関を検討する必要がある。本あるとは、模型を指すが、この結果を追加報告することに至った。現在のモデルとの問題点は、欠陥の研究方針においても明確である。

図上、図下、それぞれ、振幅を示すパラメータ（波面の進行方向に沿って面内）の初期値を、100万タム（くもろの2.8校）と、100万タム（くもろのとろ）にした場合の結果を示している。各図（左）は、トリガー波の観察、その作図、開端化、全盛期、展降るの作図の平均値の時間変化を示す。図（右）は、モデルをある半分でノーマライゼーションで変化させ、得たものである。それぞれ、波の波動状態のノーマライゼーションと表示した。

これにより、ホイール・トライレーの振幅を示す相互作用においては、波の初期値に係る平衡図を示すことができると、前回の実験と同様に高エネルギーやエネルギーが大きく、波の波動状態が相関を示す。モデルの振幅の波を示すことができる。これらの結果から、レベル・エミッションによって示されるような観察を高エネルギーのエネルギーレベルを示す。波の波動状態が相関を示す。従って、模型を指すが、この結果を追加報告することに至った。現在のモデルとの問題点は、欠陥の研究方針においても明確である。

参考文献
1) 宮本、松本、電磁気理論研究会発表
EMT-72-32, 1972
2) 宮本、松本、電磁気理論研究会発表
EMT-74-32, 1974
1-28

一様磁場下でのクリトロミ・メゾスメ内の
模様の形成

並川 昭一

桑本 大正

従来のperturbation methodでは、アクラで波の斜行波への分散式は、非常の複雑な形で表されることが困難である。二つの方法を除くVlasov Eq.の黎形式の振幅解をMaxwell Eq.に代入する方法を考え用い、前回は一様磁場方向に直角方向の波の分散定数を数値計算した。今回は更に一般的な応用を考慮した模様の分散を調べた。実際には、メソスメの考察は cold plasma theoryにまで発展される。従来の方では、後者の考察により分離がより一層ややされたが、本研究では、理論のより簡単なるものを採択した。i.e.実験使用を省略した

\[f_n(\mathbf{r}, \omega, t) = \int \mathcal{F}_n(\mathbf{r}, \mathbf{r}_0, 0) \delta(\mathbf{r} - \mathbf{R}_n) \delta(\omega - \omega_n) \, d\mathbf{r}_0 d\omega_0. \]

Maxwell Eq.の電磁気波を代入したことにあらかじめ、一つは

\[\mathcal{F}_n(\mathbf{r}, \mathbf{r}_0, 0) = \mathcal{F}_n(\mathbf{r}_0) \delta(\mathbf{r} - \mathbf{r}_0) \]

とする。i.e. 一様磁場方向に直角のモードのみを考える。

\[\frac{\partial \mathcal{F}_n}{\partial \omega} - \frac{\omega_n}{2} \frac{\partial \mathcal{F}_n}{\partial \mathbf{r}_0} = \sum_k \frac{\omega_k}{2} \mathcal{F}_k(\mathbf{r}_0) \delta(\omega - \omega_k) \]

\[\mathcal{F}_n(\mathbf{r}_0) = \int \mathcal{F}_n(\mathbf{r}, \mathbf{r}_0, 0) \, d\mathbf{r} \]

\[w_{pa} = \text{plasma frequency}, \quad w_c = \text{cyclotron frequency} \]

\[\text{Suffix} \ m \text{は各波動を表す。} \]

\[\text{Fourier-Laplacianの形は各波動の分散} \]

\[\text{分散式は} \]

\[-\omega^2 + \varepsilon^2 k^2 - \frac{\omega_n^2}{\omega^2} = 0 \quad \text{又は} \]

\[F_n(\omega) = \frac{1}{\pi} \frac{\lambda_n^2}{\omega^2 + \lambda_n^2} \]
Kelvin-Helmholtz不安定における有限電気伝導度とHall電流の効果について

永野黒

1-29

通常、微視的視野におけるMHD-K-H不安定における電気伝導度が無限大として取り扱っており、す、Hall电流の効果についても無視している。（Ex. Schatzman, Lebede v. L. Sechling et al.）微視的視野では、様々なプラズマ波動が発生され、乱れの状態にあらわれる。この場合、各応用有限な値となる。す、Hall电流も無視出来ないと考えられる。ここでは、非圧縮性流体の場合、K-H不安定において有限電気伝導度とHall电流の効果について考察する。

使用する方程式系は、通常の非圧縮性の場合のMHD方程式系においてGawnaublassの形

\[\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{1}{\rho} \nabla p + \eta \nabla^2 \mathbf{v} + \eta \nu \mathbf{B} \times \nabla \times \mathbf{B} \]

(1) \(\mathbf{B} \) の条件

(2) \(\mathbf{R} \) の条件

(3) Hall电流の条件

(4) K-Hの条件

(5) 有限K-Hの条件

この場合、Hall电流の効果を考慮しない場合、K-H不安定の発現条件は大きく変わらない。

boundary conditionを使い、この場合にも応用し、有限電気伝導度とHall电流を考慮する。
以前の皆さんで、磁気圏境界のKelvin-Helmholtz不安定についての報告を行いました。それ以降、発展が大きく広がり、その特性について深く研究することができました。

この研究では、非圧縮性流を仮定したプラズマを扱い、波数ベクトルkの磁場Bに垂直な場合と、平行な場合について数値計算を行い、これらを示す。

(1) 非圧縮性プラズマの場合

(a) kとB

(b) kとE

(2) 圧縮性プラズマの場合

(a) kとB

(b) kとE

この研究では、磁場が大きい場合に、通常のMHD理論が安定を示すことを示す。
セクション 3

超低周波音波 (AIW) の観測結果

柴木 隆
大阪府立大学 工

オーロラに伴って発生する超低周波音波 (AIW) の変音振幅は、四和基地の様に地磁気異常が激しい東京では不詳と思われ元々の様である。これには、通向けの地磁気力線に対して西向きのエレクトロジェットが発生した場合、そのローレンツ力は南向き (Equatorward) になるため、AIWは低緯度側において発射され、ジェットより高緯度では発射できない例と思われる。

下図に観察された10月10日の例を示す。21時22分に地磁気H, D成分は大きな極値を示したにもかかわらず、地磁気方程式より計算したエレクトロジェットの動きにより、この動きはオーロラを相殺する動きでAIWを発生していない。21時21～22分にH, D成分小さな極値を示した時には、22回に示す様に、v=1630 km/秒、エレクトロジェットが動く。この動きはオーロラと相乗してAIWを発生し、約9分後に地上で観測されている。震央11日0:08, 0:12の鋭いH, Dの極値では、ジェットは南向きに動いておりAIWは発生していない。
昭和基地 内陸 地磁気2点同時観測(II)

桑島正幸

地磁気観測所

外部磁気圏と磁気検査を重ね、直接関している磁気帯においては、磁気圏あるいはテーブルに因を有する様々な現象が顕著に現われる。しかし、これらの現象は発生領域から地上に至る過程において観測するのは難しい。従って磁気帯における1点観測のみでは、発生領域を正確にかつロールすることことができない。したがって、地上における多点観測が必要であり、近未来型的に取り組まれつつある。

例えば、1993年9月9日2回にわたり、昭和基地とみずほ基地、および昭和基地と大和山脈のB群の間点において、地磁気2成分と磁動の2点同時観測を行った。観測結果は现在、解釈中であるが、今後は、解釈に際して、観測点を対象とした地磁気現象の特性について報告する。

2つの観測点は、1成分に対して2成分しか離れていないにもかかわらず、傾斜に見られるサブストラスト時には、現象はっきりとした相異が見られる（図2）。

特に1成分において、両者の逆推進の変動が見られることが、この間のAEJの存在している可能性がある。このような時に、オーロラや各種磁動の観測を合せて、総合的な解析を進めていくことにより、磁気圏の物理状態を明らかにしていくたい。
Substorm と Pi-pulsation（I）

平沢盛男，鶴川勝
（国立極地研究所）

地球基坑で取扱いの容易な ordinary (50 mm/h, 10°/mm) Rapidrun (300 mm/h, 0.5°/mm),
Induction (DC ~ 7 Hz) magnetogram, All-sky camera (every 10 sec), meridian scanning photometer
のデータを解析し, substorm の開始時に観測される pi 2 (pi B) - pulsation の
特性を総合的に調べてみたい。その preliminary の結果として,

(1) 高緯度に, pi 2 のスペクトルを調べてみると, 長周期および短周期にピークを有する。

(2) 長周期のピークは, 約120秒と70秒の2つの場合があり, ともに顕著な日変化特性を示す。即ち, 21h (LT) 頃最大, 03h 頃最小となっている。

(3) この長周期の変動は, 多くはオーロラの動きの変化をよく一致する。

(4) 120秒と70秒のピークの差は何によるか未だはっきりしない。

(5) 短周期のピークは, 3〜5秒にあらく。

(6) このピークは, オーロラの活動と観測点に近い程, 大きくなる。

(7) pi 2 (pi B) のスペクトルの周波数の上限は5Hz程度であり, それ以上スペクトルを有することは稀である。
Substorm onset と Pi2 型磁気脈動

斎藤 隆生・ほか

東北大学・理学部

magnetospheric substorm に伴って P.2 型磁気脈動が発生し、次に Auroral 強域、電離層の変動、以下磁気帯の電子・運用が急激に高まる。従ってこの現象の観測も扱うべきである。したがって、磁気脈動の onset 機構に注目して以下に詳しく説明する。Pi2 型磁気脈動の観測結果の解明を通じて、磁気脈動の onset 機構を解明しようとするのが本テーマの目的である。

Substorm onset と Pi2 onset の関係について

Substorm onset は Pi2 onset の電離層の変動と対応関係がある事実が明らかにされてきている。したがって、magnetospheric substorm と Pi2 onset の間の時間関係を更に詳しく検討したいと考えている。Pi2 onset が substorm onset に伴って発生することを示すと同時に、Pi2 が substorm onset の変動を示すものである。Pi2 が増大し substorm が増大する傾向が見られる。

Pi2 の増大は基本的には下がらず、substorm の増大に伴って増大する傾向を示す。Pi2 は、substorm に伴って増大し、substorm が増大すると Pi2 が増大する傾向を示す。Pi2 が増大すると substorm が増大する傾向を示す。

Pi2 が増大すると substorm が増大する傾向を示す。Pi2 が増大ると
PCA event 時における極成地磁気擾乱

村岡良和
兵庫県立 大学

PCAがプレーアによって生成された高エネルギー核種（主としてMev級プロトン）による下部電離層の異常電離によるものであることはよく知られている。

Nagai (1966) は IG T期間中の PCA event の解析を行ない、PCAの開始と S sympathy 电流系から DP (Pre-SE) 电流系 (DP-2 型変動) への移行が対応しており、PCAの原因である異常電離と地磁気擾乱との関連があることを示唆した。そこでダイアモ理論による極成地磁気擾乱の解析は地磁気擾乱をダイアモ領域の電気伝導度の enhancement による電流系として考えることで、PCA時の一覧表電離は下部電離層（高度 90 km 以下）の電離であってダイアモ領域ではないこと、又 PCA event 時にダイアモ領域で電離を起こす低エネルギー粒子 (kev 級アプロトン等) が充分なフラックスをもって降下していることを示す観測結果が得られていないことを考えれば、上述される相互関係は定性的にも説明されていないと思われる。

今回の解析では PCA event における地磁気擾乱がどのような特性をもつものであるかを明確にするため、1966 - 1969年の主要な Solar Proton event における地磁気擾乱を調べ、プロトンフラックスの観測及びリオメーターによる観測との比較をした。その主な結果を以下に示すと,

(1) DP-2 型変動が明確に現われ始める時刻はプロトンのフラックスが急増する時刻及び PCA の開始の時刻に約を一致する。

(2) DP-2 型変動の出現する地理的範囲は、プロトンの cut-off latitude が消失する地磁気経度 65 以上の範囲に限定される。

(3) この DP-2 型変動が Solar Proton event において出現するかどうかはプロトンフラックスの振動に依存しており、その積分フラックスを

\[J_0 > E = J_0 \exp \left(-\frac{E}{E_0}\right) \]

で近似すると、で比較すると、若者大きく E_0 が小さいほど現われやすい傾向がみられる。

である。

以上の結果は低エネルギープロトン (1 Mev 以下) のフラックスが存在するなら PCA event 時にダイアモ領域の電離が起こり、S sympathy 型変動が enhancement されることが示唆する。

しかしながら低エネルギープロトンがどのような発生機構を通じて極成電離層に降下するかという問題を解決することと、電気伝導度の enhancement の定量的な説明をすることが今後の課題として残される。
1-36 太陽風北向き磁力線と磁気圏ディルに絡まる極域磁力線との結合の可能性
岩崎 昭
相模工大・工学部

極域磁気圏変動の中には、地球磁気極が50°以上南緯側の極冠域で（通常の変動は緯度による）極側から磁側に向かう電離層電流と見られる変動が存在しており、これが盛夏
南極風北向き磁場の変動と必ずしも不一致の相関をもっている。

この相関性を考慮し、北向き磁場を含む太陽風・磁気圏との相互作用のモデルを考える。
ことで、磁気圏内クレフが存在することが重要な要素となる。太陽風は磁側ガスプ
から侵入し、クレフに沿って、プラズマシャートへと流れ下るものとする。このクレフ
に侵入していく太陽風プラズマと磁力線と、磁気圏ディルに絡まっている極冠域磁力線
などが、相互作用をもって、電離層電流を生じるような磁気圏プラズマを流し、引き起こすものと考える。
（この考え方は本質的な点に関しては以前に発表したことに同じであるが、今日は新たなモデルを考
セクション4

前浜洋
東京海洋大学

惑星間空間磁場は、太陽風から地球磁気圏へのエネルギー流入量を決定するのに大きな役割を果たしていることは今や明らかである。今後は、そのエネルギー流入量が惑星間空間磁場の各成分の太陽風内の物理量にどう影響するかをつかさとめることが、太陽風－磁気圏相互作用のメカニズムを知るうえで最も重要であると思われる。ところで、磁気圏尾部を磁気圏の太陽風から導いたエネルギーの折り合いを考慮すると、Polar Cap内の中電流は、電荷密度にははかれるエネルギー流量を直接に反映しており、その意味で太陽風と磁気圏の相互作用をモニターするのに最も適当な物理量である。残念なことにPolar Cap内の中電流は、現状的に観測されていない磁場変動のうちから電荷密度推定が直接して有意な変化を調べることがより容易であろうか。したがって、Polar Cap内の中電流は、豪雨データと惑星間空間磁場のY成分を用い、それを時間変化（電荷電流密度）を比較解析し、その相関性を推定する解析方法として、相関、回帰分析を用いる。その理由は、（1）解析的に独立した象徴を分離できる、（2）Baselineのバリオする結果に影響しない、ためである。

1. 惑星間空間磁場のY成分に対する一次dependence（いわゆるSaltward effect）を分離することができる。解析は、惑星間空間磁場Bz、Bl < 1Y、Bz> 1Yの場合を、Bz> 1Yの場合の2つに分割して行った。これにより更にBzが正の場合には、負の場合と別のモデルの電流束が現れるためである。Bz> 1Yの場合の解析結果を示すと、次のように

1) Bzが負の場合の電流束は、ほぼ太陽側からT PROM束に流れるPlasma Connectionを示す。これは、電気気流、電圧側では、太陽側地球磁場を誘導する電機的抵抗を有することに対し、電流側では、太陽側Dawn-Duskに指向している。これは電流側のField aligned currentの影響を示すものと考えられる。

2) 惑星間空間磁場Bz< 1Yの場合、Fixすると、極地電流の強さはほぼ惑星間空間磁場の大きさに比例する。従って、これに長さがあるとConvective Oszillationの強さがBzにLinearに依存し、さらに依存するBz> 1Yは、依存しない（後者の可視性も推測的には期待できる）

3) Bzの値をFixすると、Convective Oszillationの強さはSolar windの速度と強く依存する。確立的には、Bz> 1Yにおいて、これもまたReconnectionのメカニズムを考える際重要である。

4) Polar Capの中電流Bzとの相関係数より、推論の式

\[
\frac{B_z^2 - B_{i2}^2}{B_z^2 + B_{i2}^2} \alpha \text{の相関係数の方が好ましい。}
\]

5) Bz dependenceの大きさはPolar cap内が同じである。後者側の方がわずかに大きいので、Bz dependenceは傾斜2ではなく、小さくなる。
岩沼 兩

東京大学研究

1) 同様の解析を B_{z} だけの範囲について行った結果は次の通りである。

2) B_{z} が正である場合に生ずる current system は、convection の向きに直すと、Resolute Bay (約 90°) 以上の高緯度では、夜側の半球から昼側の cusp 付近をとじらせて集まる熱帯太平洋方の流れるである。

3) 地磁気経度が 50° 以下 (Gadanku) になると対流の向きは昼側側からほぼ等緯度線に沿って夜側に向かう反太平洋方向になる。この対流は午後に強く、午前側ではなく夜側まで戻らないようであって、Dawn-Dusk Asymmetry が存在する。

4) 対流の大きさの予報は昼側側が強く、solar flare effect を示しているが、夜側も考慮される。(但し、今回の解析結果に限られている)

5) B_{z} が正の時は、By dependence は無視できるから、B_{z} が正の場合は上記流れると B_{z} に依存する solar flare の磁気力線を伴って成立し得る。これらの場合、B_{z} の正のときも太陽風の磁場と地磁気の磁場が相互作用をしており、B_{z} が正のときの相互作用は性質を異にしていることが明らかである。これまで推察された流れるには、基本的には Inoue (1971) の解析によると DP = pole 等とものである。しかしながら、地表流れる中で、極点間空間磁場の B_{z} より依存する部分が増し計算されることによって、このような流れる推察が得られることは意義深い。DP = pole は電離層電流の方向が異常であるということが基盤になっているため、solar flare effect の他に流れる流れが強化され、それも DP = pole に含まれてしまうからである。

B_{z} が正のときに太陽風磁場と地磁気の相互作用があることが明らかになったため、Squinox 解析も考慮する必要があると思われる。これは、Kp が小さくても Polar Cap 内では By の値を決める条件電流が決まらないからである。従って Polar Cap 内の磁場変動からの導入する部分をさらに詳しく解析する必要がある。さらにこうした解析はまだできていないが、大気において、Dusk 側から Dawn 側に近い様に流れの電流を考慮すれば、Residual である部分は説明できるようである。
高緯度の大気電場について

安原 直博
（京都教育大学）
小川 俊雄
（京大・理）

大気電場を生みめる電離層電位は、雲電場の拡張によるものに加えて、磁気圏に起因するという電場が加わっていることがある。電離層電位を考慮したとき、大気電場の観測から得られたデータと一致する。ことで、電離層電位の変動が観測される。Adler, Roi Baudouin Base（ベルギー極）における電離層電位は、電離層電位を用いて大気電場と電離層電位との関係を調べ、逐次推定されている。観測値についての検討も試みた。

今回用いた観測値は大気下層の変化による影響も含み得ると考えられるので、電離層電位の変動に加えるものとして電離層電位を考慮した。右図の結果において、電離層電位が電離層電位の変動を示している。電離層電位の変動時における観測値が不十分であることが示唆される。また各極においては、30～40°の電位が減少し、電離層電位はRoi Baudouin（電離層電位：電離層電位）に増加している。このことは、Lobodin等によっって報告されている。これにより、電離層電位の変動とオーロラ活動との相関を定義し、電離層電位を一定の変動によって決定する結果を得た。大気電場を含む電離層電位の変動が電離層電位の変動に関する大電荷状況に一致するものと考え、結果に示すほどは推測される。この点、オーロラに伴う電離層電位の変動についての考察を含め、計測結果に示されているが、これについては考慮する必要がある。
外部電場によって起こされる極地電離層の風

前田 坦
京大理学部

最近の観測によると極地電離層には常に朝方から夕方に向か電場が存在しているようである。これはしたがってイオンドリフトを通じて中性大気の運動がおこるであろう。

水平方向について考えると、イオンの運動は（粘性項を無視して）

\[
\begin{align*}
\frac{2dU}{dt} & = 2\alpha \cos \theta \cdot U - \frac{1}{3} \frac{2dE_y}{dt} + \frac{\eta}{\rho} (U-U) + \frac{\eta}{\rho} (E_x+U \cdot B_y) \\
\frac{2dV}{dt} & = -2\alpha \cos \theta \cdot V - \frac{1}{3} \frac{2dE_x}{dt} + \frac{\eta}{\rho} (V-V) + \frac{\eta}{\rho} (E_y-U \cdot B_x)
\end{align*}
\]

(1)

また中性大気の運動は

\[
\begin{align*}
\frac{2dU}{dt} & = 2\alpha \cos \theta \cdot U - \frac{1}{3} \frac{2dE_y}{dt} + \frac{\eta}{\rho} (U-U) \\
\frac{2dV}{dt} & = -2\alpha \cos \theta \cdot V - \frac{1}{3} \frac{2dE_x}{dt} + \frac{\eta}{\rho} (V-V)
\end{align*}
\]

(2)

そこで、\(E_x, E_y \) を与えて、これを式(1)を解けない。しかし数値的には中性大気の項が大きいので、(1), (2) 式をそれぞれ別に数値的に解く。小さい項を無視し、更に中性大気の粘性項も考慮した結果は次のようである。

[100 km では、\(E \) による \(U, V \) の分布により、\(U, V \) が半定常になると 3 ～ 9 回の周期をもつ。]

(\(U, V \) \rightarrow (U, V) \rightarrow (U, V) \rightarrow (U, V) \rightarrow \cdots) で 半定常のためは 3 ～ 9 回の周期をもつ。

(U, V) 具体的に (U, V) 具体的なたとえば半定常のためは 3 ～ 9 回の周期をもつ。

[200 km では、\(E \) による \(U, V \) によって \(U, V \) が半定常になるのは 1 回のみである。]

(U, V) \rightarrow (U, V) \rightarrow (U, V) \rightarrow \cdots で 半定常のためは 1 回。

(U, V) 具体的に (U, V) 具体的なたとえば半定常のためは 1 回。

中性大気の粘性を考慮に入れた結果を求め、これとアスピログリフによるレーザ観測の結果を比較する。
極域電離層電流に関する数値実験

前川朋彦

(京都大学理工学部)

前田 坦

(帝都教育大学)

2次元の電離層モデルに外部から正負の電気ポテンシャルの供給があるとき、すなわち、磁気圏からの電流によるSource, Sinkが電離層内にあるという想定のもとに(第図)、電気伝導度が非等方的で且つ一様な場合、非等方的でも非一致な場合等、各種組み合わせ計算した例について述べる。

下図(第2,第3図)の結果では、
Zxx, Zxy, Zyyの値は0.2の通りである。

\[
\Sigma_{xx} = 4.0 \times 10^{7}, \quad \Sigma_{xy} = 1.3 \times 10^{-8} \quad (0^\circ \leq \theta \leq 20^\circ) \\
\Sigma_{xx} = 8.0 \times 10^{7}, \quad \Sigma_{xy} = 2.6 \times 10^{-8} \quad (20^\circ \leq \theta \leq 70^\circ) \\
\Sigma_{xx} = 2.0 \times 10^{7}, \quad \Sigma_{xy} = 2.4 \times 10^{-8} \quad (70^\circ \leq \theta \leq 90^\circ) \\
\text{(e.m.I.c.)}
\]

第1図 電流系モデル

第2図 ポテンシャル分布

第3図 電流密度分布
A SIMPLIFIED MECHANISM FOR FIELD-ALIGNED CURRENTS
FROM THE IONOSPHERE

Koji KAWASAKI and Naoshi FUKUSHIMA
Geophysics Research Laboratory, University of Tokyo

In a previous report, it was shown through a simple model that field-aligned electric currents are generated at the boundaries of the auroral oval in the presence of the \mathbf{E}_q electric field. An exact calculation for field lines extending to infinity was made for the case in which the auroral oval itself was taken to be a boundary without latitudinal width delineating regions of constant but differing conductivities, the polar cap and the middle latitudes; the case for finite width was discussed but no analytical results were presented.

In this report, we extend the model taking into account the finite width of the oval, and also consider the situation in which the field lines at the equatorward boundary are closed, i.e., connected to the opposite hemisphere. Because the field lines are closed, a charge buildup occurs in the equatorward boundaries of the auroral ovals. Results are described which show that the primary currents together with the secondary Hall and Pedersen currents produced by the excess charge at the equatorward boundary and the field-aligned currents combine to produce a rather complex equivalent current system.
Field-aligned current と電離層電流とのつながりに関する問題（Ⅱ）

磁気圏と電離層を結ぶ電流が地上に及ぼす影響を電離層内に二次元等価電流系で表わすに際して極くむずかしい問題であるが、最も簡単な場合として、鉛直に入射してくる field-aligned current と電離層電流が合成される場合を考察した。電離層電流と電位電流が同じであること、地上に及ぼす影響を及ぼさないので、field-aligned current が流束分布をもたらす方向と南側と電位電流が異なる（電位電流の値が一定値をとる）場合も扱った。

Field-aligned current と Pedersen current とを加えたものに対しては、実際の電流と等価電流との関係は下図のようにになっている。

Hall current は、電気伝導率の逆数のときで電荷を生じさせ、そのような電荷が、(A) field-aligned current として自由に流れる場合、(B) 電離層中の Pedersen 電流として遮断してゆく場合、の両極端の場合を含めた。(B) の場合には、大まかな電荷がもたらす電流による secondary Hall current の影響を完全に考えなくてはならない。

分冊で、右図は各極の影響で流れられる secondary Hall current の全体で、原点で電流の不連続があればあるので、上の field-aligned current が増さないと電流不連続が解消されない。

一般に field-aligned current が電離層に流入するときの等価電流 i_{H} は、field-aligned current に伴う電場を E とすると、

$$
i_{H} \equiv \nabla \times (\sigma_{H}(\text{apparent}) E - \sigma_{E}(\text{apparent}) E \times B/B)$$

と書くことができる。ここで

$$
\begin{align*}
\sigma_{H}(\text{apparent}) & = \left(\sigma_{H} - \sigma_{0} \right)/2 \\
\sigma_{E}(\text{apparent}) & = \left(\sigma_{E} - \sigma_{0} \right)/2
\end{align*}
$$

と与えられる。

Field-aligned current が無限に流れるかどうかは、sheet current の場合には、Hall current が電気伝導率の不連続を近似させてから、(A) (B) を区別する必要はなくなる。
Polar Magnetic Variation: 1) 北方海域

東大・理

熊谷健

ATS-1.3 計測 magnometer data (1967-1968) の解析より、盛夏の夏が
明らかにされた。

① AB (local mag. field と local mag. meridian 方向成分) が
relative 2.20 - 0.300 dipole local time sectors に発現される。
AB は Summer relative と Westward, Winter relative と
Eastward で、11/22 - 15/20 で 7.7:7.2。

② AB 事件より、AB (全解析) は頭が AB (analytical)
1.5 Summer relative と Eastward, Winter relative と Tail-
ward で発生。

③ |AB| と AB-decrease が好相関 (≈ 40 events) で報告。

10.5 事実で、ATS-1 の位置は ±69.3° から 79.3° で
Midnight と Aurora-belt と poleward portion = field-aligned 電流が
不等分な間の電極層に流入し、layer が存在するこ
とを示す。

Fairfield (1973) (disturb magnetotail), Zmuda and
Armstrong (1974) (after km altitude), Miyaura (1974) (low-
lat. magnetosphere) にみられる、高さの異なる層に
観測された。field-aligned 電流モデルの説明が、17/23 に
明示される事は、field-aligned 現象は outer magnetosphere と
background の 2.7:3 と equipart current sift が2 割と 2 割に
分配される。Midnight - Westward auroral
electrojet は、Tail current と一部走り、field-aligned 電流モデルが 3.4:7.31 と 2 割と 2 割を示さないかから、一般化がされて
あり、電気層と background の電流を合わせる必要がある。
Substorm の特性 - iii

金田宗範（京大理地物所教授）

Substorm の特性は、地球の大気の磁場をもって観察されており、growth phase の存在が確認されている。growth phase の存在が確認され、Substorm の特性を提示する。一方で、成長段階のAE-index の変化を解析し、AE-index の平均値が低下することにより、成長段階が示唆される。AE-index の変化は、成長段階を示すものである。

DAPP 作図のスキャナーにより、オーロラの二次元表現の実現（DAPP-Photograph）が図られる。DAPP-Photograph のオーロラの変動を示す特徴解析を行い、DAPP-Photograph の解析を行い、DAPP-Photograph の特性を示す。

1. 磁気時刻表において観察した double auroral belt の構造が示されている。
2. inner belt は通常の auroral oval と同様、高緯度側に存在し、比較的 diffuse な outer belt に対して、discrete な hole に示される。
3. この double belt 構造は、磁気時刻表において観察された johnson 的 2-3 時間の DAPP-Photograph の特徴である。分離、拡散等に大いに変化が認められる。通常の substorm に対しても、成長段階は示す。

この double belt 構造の観察は、DAPP-Photograph の解析において、growth phase の存在が予想される。この模様の特性を、成長段階の下を模様する特征として示される。DAPP-Photograph の解析において観察された double belt structure は、成長段階の substorm の変化を示すものである。
Table 2. Ionospheric sounding rockets.

<table>
<thead>
<tr>
<th>Rocket</th>
<th>S-20 JA-18</th>
<th>S-210 JA-17</th>
<th>S-210 JA-19</th>
<th>S-210 JA-18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>02h45m</td>
<td>02h54m</td>
<td>22h09m</td>
<td>03h53m</td>
</tr>
<tr>
<td>Altitude</td>
<td>82°</td>
<td>82°</td>
<td>82°</td>
<td>82°</td>
</tr>
<tr>
<td>Velocity</td>
<td>135°</td>
<td>135°</td>
<td>135°</td>
<td>315°</td>
</tr>
<tr>
<td>Range</td>
<td>102.6 km</td>
<td>104.3 km</td>
<td>130.0 km</td>
<td>129.4 km</td>
</tr>
<tr>
<td>Velocity</td>
<td>2m 31s</td>
<td>2m 49s</td>
<td>2m 53s</td>
<td>2m 52s</td>
</tr>
<tr>
<td>Distance</td>
<td>144.5 km</td>
<td>124.3 km</td>
<td>92.9 km</td>
<td>128.5 km</td>
</tr>
<tr>
<td>Date</td>
<td>05m00s</td>
<td>5m35s</td>
<td>5m42s</td>
<td>5m33s</td>
</tr>
<tr>
<td>Location</td>
<td>11°</td>
<td>134°</td>
<td>149°</td>
<td>343°</td>
</tr>
<tr>
<td>Time</td>
<td>0.2% E</td>
<td>0% -</td>
<td>0.2% SE</td>
<td></td>
</tr>
<tr>
<td>Sun</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clouds</td>
<td>-3000</td>
<td>-7500</td>
<td>1500</td>
<td>5000</td>
</tr>
<tr>
<td>CNA</td>
<td>-10.5 dB</td>
<td>5.0 dB</td>
<td>0 dB</td>
<td>-0.5 dB</td>
</tr>
<tr>
<td>Light</td>
<td>-7.7 KR</td>
<td>0</td>
<td>3~5 KR</td>
<td></td>
</tr>
<tr>
<td>Rocket</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. SARS-14 rocket experiments.

<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
<th>Time</th>
<th>Place(Lat)</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-21/18</td>
<td>23h29m</td>
<td>AEH, AUL, AER, GA</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>19/18</td>
<td>23h47m</td>
<td>AEH, AUL, AER, GA</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>18/19</td>
<td>23h11m</td>
<td>AEH, AUL, AER, GA</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>19/18</td>
<td>02h45m</td>
<td>SCI, NL, TEL, GA</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20/18</td>
<td>02h54m</td>
<td>AEH, AER, NL, TEL, GA</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>21/18</td>
<td>03h53m</td>
<td>POF, AER, NL, TEL, GA</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>22/18</td>
<td>22h09m</td>
<td>NWL, NL, TEL, GA</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1

Fig. 2
ロケットによる南極電離層の電子密度ゆらぎの観測
小川啓彦 森 弘隆 宮崎 良
電波研究所

第13次、14次南極観測隊によって多くのロケットが打ち上げられ、オーロラ出現時の電離層の状態が観測された。われわれは、電子密度観測時にしばしば見られた電子密度ゆらぎの様子を観察した。電離層の電子密度分布は電波探査によって観測された。結果、電離層の電子密度は電波探査によって観測された高密度帯を示した。図からわかるように、ゆらぎは高度90〜120 kmまでの範囲で存在した。ゆらぎの振幅は各次に電子密度分布の電子密度ゆらぎの観測された高密度帯を示した。図からわかるように、ゆらぎは高度90〜120 kmまでの範囲で存在した。ゆらぎの振幅は各次に電子密度分布の電子密度ゆらぎの観測された高密度帯を示した。図からわかり

参考文献
(1) 宮崎 良, 電気学報
(2) 平沢成男, 私信

表1.

<table>
<thead>
<tr>
<th>Rocket</th>
<th>Date</th>
<th>Time (UT)</th>
<th>Geomag-</th>
<th>CNA</th>
<th>Ionogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-210-JA-8</td>
<td>Aug. 11, 1972</td>
<td>0401</td>
<td>-450°</td>
<td>-1.6 db</td>
<td>Blackout</td>
</tr>
<tr>
<td>-9</td>
<td>May 14, 1972</td>
<td>0213</td>
<td>-290°</td>
<td>-1.3 db</td>
<td>Blackout</td>
</tr>
<tr>
<td>-10</td>
<td>May 16, 1972</td>
<td>0202</td>
<td>-200°</td>
<td>-0.3 db</td>
<td>Spread F</td>
</tr>
<tr>
<td>-16</td>
<td>Feb. 15, 1973</td>
<td>0245</td>
<td>-300°</td>
<td>-1.5 db</td>
<td>Sporadic E</td>
</tr>
<tr>
<td>-18</td>
<td>Apr. 23, 1973</td>
<td>0254</td>
<td>-750°</td>
<td>-5.0 db</td>
<td>Blackout</td>
</tr>
<tr>
<td></td>
<td>Aug. 23, 1973</td>
<td>0353</td>
<td>-50°</td>
<td>-0.5 db</td>
<td>Unstable</td>
</tr>
</tbody>
</table>
The electron density \(N\) distribution within an auroral arc was observed on a sounding rocket which penetrates into the auroral arc. The electron density in the E-region is anomalously enhanced, becoming \((2 \sim 5) \times 10^5 \text{ ele/cm}^3\), only within the moving auroral arc, whose \(N_2^+ 4278\AA\) auroral luminosity is \((1 \sim 2.5) \text{ KR}\). The electron density of the D-region beneath the lower boundary of the auroral arc \((75 \sim 95 \text{ km in altitude})\) also is considerably enhanced, amounting to \((2 \sim 5) \times 10^4 \text{ ele/cm}^3\) (See Fig. 1-b). Fig. 1-a shows the relative geometry between the ascending rocket and the moving auroral arc.

The observed E-region electron density can be theoretically interpreted as due to the direct ionization by precipitating auroral electrons, whose energy spectrum \(f(E)\) is approximated by \(f(E)dE \sim F_0 \exp(-E/E_0)\) with \(E_0 = 2 \text{ keV}\). The relation between the electron density and the \(N_2^+ 4278\AA\) auroral luminosity \((14278)\) can be reasonably explained by considering the simultaneous effects of ionization and excitation by the electron flux represented by \(F_0 = 9 \times 10^9 \text{ ele/cm}^2/\text{sec} \text{ per I}_{14278} = 1 \text{ KR}\).

The electron density in the D-region is very likely due to the aurorally associated Bremsstrahlung X-rays ionization. Four other data of the N-profile measurement by sounding rockets which passed nearby auroras but did not penetrate into them show that \(N\) in the D-region only is systematically enhanced depending on the polar substorm magnitude represented by the intensity of negative auroral electrojet and CNA, but \(N\) in the E-region did not show any systematic increase (See Fig. 2). The enhancement of the D-region electron density can be qualitatively interpreted as due to the auroral Bremsstrahlung X-rays coming nearby auroras. However, the quantitative estimate of \(N\) in the D-region based on the existing theories (Rees 1964, Kamiyama 1970) does not seem to be fully sufficient to explain the observed strong ionization of the D-region.
A striking resemblance has been found between the global pattern of an S-shaped structure in the dusk sector seen in a DAPP photograph (westward travelling surge) and a small-scale S-pattern observed by a highly sensitive TV camera. A remarkable similarity has also been found between flame-like structures of small-scale aurora and that of global scale.

Examinations of the development processes producing both of these characteristic patterns, namely the S and the flame, of various scales, lead to a conclusion that the basic development processes are the same, independent of the size of these patterns. Another important point is the existence of a rotational symmetry between the formation of an S-structure and the formation of a flame-structure, suggesting that the formation processes of the S and the flame patterns are basically the same.

The similarity between the deformation processes of large-scale aurora and those of small-scale aurora, and the rotational symmetry between the formation processes of an S-structure and those of a flame-structure, both indicate that the auroral deformation is attributable to the general dynamics of an electron sheet or a cloud of electrons in a magnetic field, regardless of both the specific configuration and condition of the magnetic field and the plasma distribution around the earth. The clockwise angular ascent of an electron system in a magnetic field and a beam-associated electric field presumably plays an essential role in deformation processes of aurora.

Fig. 1 An example of the similarity between the auroral pattern of global scale observed by a satellite (left) and that of small scale observed by a TV camera. Both of them are complicated S-patterns, which yield from a splitting of an S-pattern in the middle into two S's. The scale of the pattern in the left panel is about 1000 km and that in the right is about 50 km. Note that the left is the northern aurora viewed from above, while the right is the southern aurora viewed from below.
Morphological study of auroral behaviours in the southern polar region

T. Nagata, T. Hirasawa and M. Ayukawa
National Institute of Polar Research

The auroral imagery data from the USAF DAPP Satellite (Fig. 1) have been analyzed for studying the auroral substorms, in particular, in the southern polar region, in conjunction with various ground-based data at Syowa Station. The following problems are main interests in the present study:

1. Configuration of auroral oval during the course of a substorm;
2. Dependence of the radius of auroral oval on the magnetic disturbance conditions;
3. Relationships between the position of auroras and the intensity variations of ground-based phenomena such as magnetic disturbances, VLF-emissions, ULF, CNA etc. observed at Syowa Station.

Preliminary results have indicated the followings:

1. As schematically illustrated in Fig. 2, the auroral oval changes its shape during the course of polar substorm;
2. The position of the night-side auroral oval depends on the magnetic activity, the distance between the geomagnetic pole and the night-side oval increasing with an increase of Kp - Value;
3. When the active area of auroras approaches, substorm phenomena observed at Syowa successively take place in the following systematic order with time, namely (a) VLF-hiss emissions, (b) positive magnetic disturbances, (c) pc4 (sometimes pc3) pulsations, (d) negative magnetic disturbances, (e) decreasing CNA and (f) pi-burst pulsations.

Fig. 1 DAPP Data

1. quiet
2. breakup
3. post-breakup

Fig. 2 Auroral oval
符号化パルス方式サウンドによる電離層の地上観測

相江 知弘，吉備 進男，五木 顕彦

推進意思用サウンド（Topside Sounder）として従来の単一パルス方式より一歩進んだものを開発するため、不確率伝播性能の向上が期待される符号化パルス方式サウンドの基礎実験装置を作製した（詳細については別に発表予定）。この装置は従来推進に伴う誤解を解明するために基本実験のみならず、実験装置の設定及び実験結果の観測を実験した。結果を示し、あらゆる伝播可能距離をより長くとれないこと、大幅な距離誤差伝播が極端で必要としないことも考慮し、符号化列として推進特性を増幅した13ビットパーキャリバー符号を採用した。実験装置の説明を示すと、全パルス長：260μsec、サブパルス幅：20μsec、送信パルス間隔：40.96μsec、変調方式：記号相位変調、変換側1中間周波数：60kHz、オフセット周波数：3kHz、整合フィルタ：音響延長特性をも含めた等列延長方式（IF処理）の場合である。テクノロジー設計に成功し、推進特性を相場してアンテナから伝送される。及射波は一度、オフセット周波数に変換され、フィルタで通過した中間周波数が変換された後、40μsecの帯域制限を経てトーカー中間波長が変換された後、約60μsecの帯域制限を経て信号フィルタにて解説される。オフセットは以下のパーキャリア箱を用いた場合、3kHz帯内変調波と信号処理を行い、IF処理の結果、等列解析結果は相場的に伝送。相場特性を考慮した結果が示される。オフセットは図に示したように、3kHz帯内変調波と信号波形を用いて等列解析結果は相場的に伝送。相場特性を考慮した結果が示される。オフセットは図に示したように、3kHz帯内変調波と信号波形を用いて等列解析結果は相場的に伝送。相場特性を考慮した結果が示される。オフセットは図に示したように、3kHz帯内変調波と信号波形を用いて等列解析結果は相場的に伝送。相場特性を考慮した結果が示される。オフセットは図に示したように、3kHz帯内変調波と信号波形を用いて等列解析結果は相場的に伝送。相場特性を考慮した結果が示される。オフセットは図に示したように、3kHz帯内変調波と信号波形を用いて等列解析結果は相場的に伝送。相場特性を考慮した結果が示される。オフセットは図に示したように、3kHz帯内変調波と信号波形を用いて等列解析結果は相場的に伝送。相場特性を考慮した結果が示される。オフセットは図に示したように、3kHz帯内変調波と信号波形を用いて等列解析結果は相場的に伝送。相場特性を考慮した結果が示される。オフセットは図に示したように、3kHz帯内変調波と信号波形を用いて等列解析結果は相場的に伝送。相場特性を考慮した結果が示される。オフセットは図に示したように、3kHz帯内変調波と信号波形を用いて等列解析結果は相場的に伝送。相場特性を考慮した結果が示される。オフセットは図に示したように、3kHz帯内変調波と信号波形を用いて等列解析結果は相場的に伝送。相場特性を考慮した結果が示される。オフセットは図に示したように、3kHz帯内変調波と信号波形を用いて等列解析結果は相場的に伝送。相場特性を考慮した結果が示される。オフセットは図に示したように、3kHz帯内変調波と信号波形を用いて等列解析結果は相場的に伝送。相場特性を考慮した結果が示される。オフセット是
セクション 6

河島信治, 久保幸, 佐口俊, 内村俊一, 杉野幸男, 金子修

1-53 K-9M-46号機による電離層プラズマ制御実験

この電離層プラズマの発生体による測定は、主として自然観測法が主であり、これに対して自然のプラズマと人工による試験用の慣性がある。特に1950年代の宇宙事業においては現在までの間に開発されているスペース・シート計画などがこの目的を示されている。

改めてこれらの電子ビームや酸素電離を用いた実験が行われている。人工的に生成したプラズマは、パラメータを加速・加速する実験を行った。

特に高エネルギーのプラズマは、人工的に加速され、数秒で最も高度なエネルギーに達した。プラズマの速度は、1の10秒に1秒設電し、全体で約45÷50の設電が行われた。

測定はラジオおよびレーダーの広範囲で観測・測定し、レーダーの変速速度を制限するため、レーダー入力データを取得し、1024 mark 的信号をプラズマ放電後10秒間を記録し、レーダー回路が動作があらかじめ保証されている。これにより、測定した結果を示すことが可能である。

本研究は空間電離層観測と宇宙科学による宇宙電離層観測を行うために行われた。
1-54 極域の熱風風条

数値実験

山下善弘, 庄たか盛

気象庁, 気象情報部

(1) 基本的仮定

(1) 理想気流(強度のない)下層に限ることを仮定する。
(2) 理想気流下部の強制対流の状態にあり、水平に均等に分布している。
(3) 理想気流下部の強制対流の状態にあり、水平に均等に分布している。
(4) 理想気流下部の強制対流の状態にあり、水平に均等に分布している。
(5) 理想気流下部の強制対流の状態にあり、水平に均等に分布している。
(6) 理想気流下部の強制対流の状態にあり、水平に均等に分布している。

(2) 極域の熱風風条

(3) 基本的仮定

(4) 数値実験

数値実験を行った。
F2層電子密度変動を主として支配するものとして、電場は、赤道領域を除いて余り有効とは考えられていなかった。しかしながら、極圏域から赤道域（Geomagnetic）までのほぼ同一経度（Geographic）に沿った各ステーションのF2の長周期変動（50～100）を調べてみると、

1) 各ステーション周辺には、特によりpeakをpeak同報からなる

2) これpeakをpeak相間の仕方（正相間か負相間か）に磁気経度によって変化するか、高中経度・低経度及び赤道の3つの領域に分けられる。すなわち、領域間で相関がある。その仕方はいくつかのcaseがある

3) 各peakは地磁気の長周期変動（5日～10日）のpeakとよく一致する

4) 同様に、Kpの長周期変動ともよく一致する

以上のことから極圏域においても電場が有効に働いているとも思えば、どの様な電場によって、いかなるmechanismによって電子密度は変動しているであろうか。

(1) これまでのcase、特に地磁気及びKpのpeakと一致するcaseについてはcase studyを行う。

F２層ピーカー標準的電子密度および高さの計算式

米沢利之

前回の学会において任意の天気モデルに対して普通の個数下でF２層電子密度プロファイルを計算する方法を述べ、2.3.4と計算結果について述べた。今回は、この方法によりCIRA1972天気モデルを用いてF２層電子密度プロファイルを計算し、とくにピーカー電子密度Nₘₐₓと高さZₘₐₓ（kmで測る）を、高さ300Kmのレベルにおける酸素原子ストーンハイトと電子濃度係数および電子イオン密度推定値（それぞれH₃₀, B₃₀₀およびD₃₀₀で表す）、気圧経度、大気層の傾斜角、大気ストーンハイト外気圏温度Tₗₘを用いて簡単な天気モデルを用いて、それぞれについて報告する。

前回と同様に従来法に従った公式は次の通りである。ただし、「X層」密度Sₚ、酸素原子電子密度推定値のB₃₀₀およびD₃₀₀は天気モデルにより得られた。ニードル、[Na]₃₀₀、[O₂]₃₀₀が300Kmよめると300Kmのレベルにおける酸素分子数密度、酸素原子密度密度、中性大気密度密度、中性大気温度密度、中性大気密度密度を用いた値である。また電子密度は縮小気象変化を考慮して、実際の閉外気圏からF₂層電子密度推定値から推定される値と同じにした。最後に条件値の値はここでの値である。もとをとると、

\[
\log_{10} N = 5.985 + 0.185 \cdot \log_{10} \left(\frac{B_{300} \cdot O_{300}}{D_{300}} \right) + 0.046 \cdot \left(\log_{10} \left(\frac{B_{300} \cdot O_{300}}{D_{300}} \right) \right)^2
\]

\[\alpha \cdot \log_{10} \left(\frac{1}{\sin^2 \chi} \right) - \beta \cdot \log_{10} T - \left(\alpha \cdot \log_{10} \sec \chi \right) \cdot \log_{10} \sec \chi \]

\[= 0.350 - 0.011 \exp \left[0.194 \exp \left(\frac{0.00227 \cdot (1600 - T_{\lambda})}{T_{\lambda}} \right) \right] - 0.0119 \exp \left(-0.00047 \cdot T_{\lambda} \right) \]

\[= 0.0228 - 0.0398 \exp \left[\frac{T_{\lambda} - 300}{1000} \right] - 0.0119 \exp \left(-0.00047 \cdot T_{\lambda} \right) \]

\[= 0.0228 - 0.0398 \exp \left[\frac{T_{\lambda} - 300}{1000} \right] - 0.0119 \exp \left(-0.00047 \cdot T_{\lambda} \right) \]

\[\alpha = 0.0805 - 0.011 \exp \left(0.00227 \cdot (1600 - T_{\lambda}) \right) \cdot \log_{10} \left(\frac{B_{300} \cdot O_{300}}{D_{300}} \right) \cdot \frac{1}{\sin^2 \chi} \]

\[\alpha = 0.0805 - 0.011 \exp \left(0.00227 \cdot (1600 - T_{\lambda}) \right) \cdot \log_{10} \left(\frac{B_{300} \cdot O_{300}}{D_{300}} \right) \cdot \frac{1}{\sin^2 \chi} \]

\[= 0.0805 - 0.011 \exp \left[0.00227 \cdot (1600 - T_{\lambda}) \right] \cdot \log_{10} \left(\frac{B_{300} \cdot O_{300}}{D_{300}} \right) \cdot \frac{1}{\sin^2 \chi} \]

\[= 0.0805 - 0.011 \exp \left[0.00227 \cdot (1600 - T_{\lambda}) \right] \cdot \log_{10} \left(\frac{B_{300} \cdot O_{300}}{D_{300}} \right) \cdot \frac{1}{\sin^2 \chi} \]

\[= 0.0805 - 0.011 \exp \left[0.00227 \cdot (1600 - T_{\lambda}) \right] \cdot \log_{10} \left(\frac{B_{300} \cdot O_{300}}{D_{300}} \right) \cdot \frac{1}{\sin^2 \chi} \]

\[S = \left(2.4 - 0.2 \cdot \frac{1600 - T_{\lambda}}{1000} \right) \times 10^{10} \text{photons cm}^{-2} \text{sec}^{-1}, \quad \sigma = 8 \times 10^{-18} \text{cm}^2 \]

\[B_{300} = B_{300}^{\text{geo}} + B_{300}^{\text{geo}} \times \left(\text{Na}_{300} + 10 \cdot \text{O}_{300} \right) \times 5 \times 10^{-19} \text{cm}^2 \text{sec}^{-1} \]

\[D_{300} = \frac{8 \times 10^{12}}{T_{\lambda}^{300}} \left(\frac{T_{\lambda}}{1000} \right)^2 \text{cm}^2 \text{sec}^{-1} \]

この値は20°Sで90°N、0°Sで75°N、1000°KでTₗₘₐₓで1600°Kの範囲内では数値が一定値である。これにより天気密度プロファイルの相対的比較を図るのに役立つ。
CHARACTERISTICS OF ELECTRON DENSITY
AND ELECTRON TEMPERATURE IN THE TOPSIDE IONOSPHERE

Girija Rajaram
Institute of Space and Aeronautical Science
University of Tokyo

A statistical study of electron density (N_e), and electron temperature (T_e) in the 2500 ± 500 km region shows marked seasonal variations. Unlike in the F-region, here the Solstitial values exceed the Equinoctial values of N_e. The feature of an equatorial trough with peaks in N_e at about ±35° geomagnetic latitude is more pronounced in the Solstices than in Equinoxes with the peak in the local summer hemisphere being larger. Increased magnetic activity seems to intensify these peaks with a decrease of N_e in the ±40° region, and an increase beyond this. The response of T_e to season and magnetic activity is not so clear.

Most studies of N_e and T_e show that a decrease in N_e at the low and mid-latitudes is accompanied by an increase in T_e, and vice versa at higher latitudes. A plot of $\ln N_e$ against $1/T_e$ for the 0° to 60° geomagnetic latitude range shows that:

1. For the low latitudes of 0° to 30°, N_e shows only a slight change (this being an increase in the Solstices) for an increase in T_e.
2. In the 30° to 50° region, N_e shows some decrease for an increase in T_e.
3. Observations for the 50° to 60° region suggest that N_e decreases sharply for even a small increase in T_e.

It suggests that differing physical processes govern the relationship between N_e and T_e at different latitudes. If one assumes a diffusive equilibrium relationship of the type $N = N_0 e^{-h/M}$, it is possible that both N_e and the mean ionic mass vary considerably with latitude.

Relationship between $\ln N_e$ and $1/T_e$ in the height-range 2500 ± 500 km for night-time, $K_p < 3$.

![Graph showing relationship between $\ln N_e$ and $1/T_e$.]
LONGITUDINAL DEPENDENCE OF NIGHT-TIME ELECTRON DENSITY DISTRIBUTIONS IN THE TOPSIDE IONOSPHERE

Girija Rajaram
Institute of Space and Aeronautical Science
University of Tokyo

It is shown that the latitudinal variation of night-time \(N_e \) in the Topside Ionosphere with two pronounced peaks located at around \(\pm 35^\circ \) geomagnetic latitude, has a marked longitudinal dependence. The \(N_e \) peaks are absent in the Ionosphere over the West Zone (approximately corresponding to equatorial geomagnetic longitudes 270° to 360°), and are most pronounced in the East Zone (150° to 250°). The Intermediate Zone (50° to 150°) also shows these \(N_e \) peaks. For the same local time electron densities at all heights are larger in the West Zone than in the other two Zones. A seasonal trend is observed in that the peaks are absent in Equinoctial months and are seen in Solstitial months.

These mid-latitude \(N_e \) peaks are observed at all heights above 400 km and are clearly visible even in the 2800 km observations obtained by the Alouette II satellite. The peaks move in towards the equator with increasing height, thereby suggesting their location on some definite “anomaly field line”. The effect of magnetic activity is to enhance the magnitude of these peaks relative to the equatorial \(N_e \) value. These features can be explained by the existence of a westward electric field in the protonosphere at night. At the equatorial regions, such an electric field would cause a downward \(E \times B \) drift of ionization from the protonosphere, and subsequent diffusion along the field lines would give rise to the observed \(N_e \) peaks. The longitudinal inequalities could be explained by the differing \(B \) in the different zones, which would determine both the downward drift and diffusion. It seems quite reasonable that this \(E \) field should intensify during geomagnetic disturbances, and cause enhanced \(N_e \) peaks.

A pronounced difference in the width of the plasmatrough is also noticed in the West Zone. While the poleward and equatorward cliffs of the trough differ by only 30° in the Intermediate Zone, this difference is as much as 60° in the West Zone. The West Zone also exhibits considerable structure in the trough with several well-defined spikes in the minimum. The region of high \(T_e \) corresponding to the plasmatrough shows similar variations in width between the different zones.
赤道域上部電離層の磁気嵐時の変動

セクション 7

我々は Aloette II のデータを用いて、赤道域上部電離層の電子密度の総対応分の静穏時と磁気嵐時の比較を行う storm-time 変化を調査し、その結果

(1) 磁気嵐時に存在していた赤道異常が磁気嵐時に消え、地磁気が静穏な状態に戻ると再び赤道異常が現われる程度の記（図1）

(2) 地磁気最終相の初期に上に同様の変化が見られるが、その後に赤道異常の電子密度が減少し、地磁気が静穏な状態に回復した時点でも赤道異常が現れないで、しかも赤道異常のとき dip angle 28° 以内の総対応全体で極端の分布に比べて電子密度の減少する型（図2）

(3) 磁気嵐時に存在しなかった赤道異常が低緯度の高い領域に現れる電子密度の増加ともに静穏時に戻る型（図3）

(4) 磁気嵐時にも異常は赤道異常に存在せず、電子密度が微弱に増加し、地磁気の回復とともに回復する型（図4）

以上がすべての結果である。

このようにいくつかの型の変動を示す原因として赤道帯域域の電離層の変動（それに伴う電子ドリフトの変動）が考えられる。地磁気異常を起こすと、電子密度の変動が実際には起こらないか抑えられていることが考えられる。その一方で、地磁気変動のDF成分から求めた電離層の電荷成分の変動と上部電離層の変動と比べて比較的小さい変動をあわせて観察する必要がある。
日本附近の大気電離図において電子密度の分布

中村義勝 松浦常夫 西崎茂 永山幹司
北條尚志（郵政省電波研究所）

電波研究機関から得られたAlouette II による N(k) プロファイルは DATA ON TOPSIDE IONOSPHERE prepared by Radio Research Laboratories としてまとめられている。ここでは1967年と1968年二年間、147パスのデータ（Vol.2-5）において統計処理を行い、日本附近の平均的な電子密度を求めるため時間変化を中心に結果を述べる。
プロトンサイクロトロン・エコーの出現について

西崎 佳 松浦 延夫
電波研究所

PCE（Proton Cyclotron Echo）が筆者らによって見出されから約5年になり、ALOUETTE, ISIS のデータ数も成長してきて統計的処理も出来るようになった。またデータの異常が改訂されて PCE が読み取れるようになったため、最近大変興味深い事実が明らかになったので、ここに報告する。

1) PCE は特定の伏波数領域で強い多重エコーが見られ、fH より高い伏波数領域に現われるもの（高周波エコー）と、fH より低い伏波数領域に現われるもの（低周波エコー）の2種類がある。
 これら2種類についての出現特徴は次のようになる。
 i) 多重エコーの最高瞬度伏波数
 高周波エコーについて統計的に約 1.29 fH である。
 低周波エコーについては、サウンダー・周波数下限界のために明らかにすることはきわしくなかったが、一概に近い（0.1MHz）近辺にあるものと思われる。
 ii) 発生場所について
 高周波エコーは Geomag. ±20° 以内の 1500 km 以上の高度範囲で多く見られ、低高度ではほとんど見られない。
 低周波エコーは Geomag. 40° 付近までの広い範囲に多く見られ、高波数領域で約 2000 km 以下の低高度領域に多く見られ、高高度ではほとんど見られない。

2) PCE の遅延時間（サウンダーの送信パルスより）
 i) 多重 PCE についてパルス遅延時間は約 1% の精度で基本エコー遅延時間の数倍である。
 ii) PCE のパルス遅延時間をプロトン波回（レイレーション）時間 [fH (n + 3) の読み取り値から求める] は約 2% 以内で一致している。

第1図

サウンダー送信パルス
プロトン・サイクロトロン・エコー（理論エコー）

第1回1973年2月27日 01:28 UT, ISIS-2 リスサウンダー
ビデオ信号に現われたプロトノサイクロトロン多重エコー
1-64 降下低エネルギー電子へのAnalytic Approach

大気に入射したenergetic electron のdegrading process に対し、$\phi_e(z, \mu)$ をenergy E のelectron の高度E, pitch-angle α ($\alpha = \cos \alpha$) でのflux とすると、flux の連続の式は以下のようになることが出来る。

$$\mu \frac{d\phi_e(z, \mu)}{dz} = -\int \phi_{ke} (E', \mu') \frac{d\phi_e (E, \mu)}{dE} \frac{dE'}{dE} + \int_{E' > E} \phi_{ke} (E, \mu) dE'$$

この右辺の第一項は散乱 loss, 第二項は他のpitch-angle からの散乱に導き生ずる部分, 第三項はenergy E がin elastic collision により energy E に落ち込む部分である。

比較的低エネルギー (= 1 keV以下) のprecipitating electron に対しては、(1)式へadverse ordinate の方法を用いてanalytic approach する方法が有効であること、及びその数の概略を前後国の学会で述べた。

今回はこの問題についてより実際的な場合をいくつかとり上げ、その結果を示す。又付随する若干の問題について議論を行う。今回とり上げる論点を以下に列挙する。

(1) adverse ordinate の適用と結果の収束性
(2) elastic collision のanisotropy としてたらどうなる問題
(3) inelastic collision に際してのpitch-angle の散乱
(4) cascading flux のpitch-angle 分布
(5) back-scattered flux のenergy 分布とpitch-angle 分布
(6) モデル大気へのapply
(7) 角度の検討
(8) ionization rate の高度分布
放射線帯下電子エネルギー分布の空間依存性

竹田 一、今井 藤、石田雅美

科学衛星「しんせい」に搭載されたプラスチック・シンチレータを用いて測定された100 keV 級の電子のエネルギー分布が B, L なびに 24° へと変える変化を調査した結果を報告する。検出器は AC 入射型、円筒形コードタ（平均間隔偏 24°）を設けている。コードタ軸は衛星スピン軸と垂直な平面内にあり、衛星スピン周期（1/3.5 sec）で衛星スピン周辺（1/2.5 sec）で作成された計数率は、電子のピッチ角 90° 附近的ある範囲の平均値であり、ピッチ角分布が等方的な限り、スピン軸の傾斜角と平均値に依存する。

1. B-L 図上 等強度束の分布のエネルギー依存性

いま上記の衛星姿勢依存性を一応無視して等強度束を各エネルギー範囲について、等式を定めると図の如くなり、エネルギーが低い程、B-L 図上の傾斜（dB/dL）が大きい。

2. 電子のエネルギーベクトルが B-L に大きく依存することは 1 項の図からも想像させるが、より直接的に、特定の (B-L) に対する電子のエネルギーベクトルの形の整理作業、衛星姿勢に関する補正などの点で必要である。最初に B-L の範囲について行ない、時間変化および温度変化などの点をチェックし、次にに B-L における計画がある。
SRATS衛星におけるプラズマ計測

1. 座・1975年2月打ち上げ予定のSRATS衛星に搭載される高周波インピーダンスプローブ（IMP）によるプラズマ計測の計画概要を述べる。

2. 観測機器の構成（第1図参照）衛星本体より465cmスペシックに直交する方向に突出された20cmの円形プローブを用いる。プラズマ中の電気抵抗値を300kHz〜14MHzまで周波数範囲で測定する。データ-伝送速度の制限がUHR周波数と400kHzでのインピーダンス値をフレーム（sec）毎に測定し、その値を8bitでデジタル化して地上に送信する。UHR周波数検出にはインピーダンス値のPeak detectorを行い、UHR点を検出し、この検出パルスで周波数カウンターを起動することによってUHR周波数を直接計測する。400kHzでのアドミッタンス測定は、プローブに加えられている周波数が400kHzを越したときにアドミッタンス値をサンプリングホールドする。このデータは読み出し指令パルスを得てルーチャーAD変換器へ送られる。

3. ノイズ対策REXS衛星ではレーベル-キューサから外乱への影響があり、UHR周波数の誤検出が起こっていた。この問題を解決するため、周波数検出時間を1 secにおおむし、時間間隔を短くする2種類の低周波シグナルを付加し自動切換方式をとった。

4. 試テスト現在横田日本核燃料研究所の周波数特性が良好な結果を得た。特にプローブによる実験は初めてのものであるが、その容量は1/3Fであり、スーストレーナーを用いたプラズマ計測では第2図に示すようにUHRがすくに検出された。

5. うすすい検出される高周波インピーダンス値は、水面検出される（あるいは近距離の周波数計測値）を高周波に換算する。衛星周辺の電子密度が求められ400kHzにおいてインピーダンス値から電子密度を決定することにより電子密度が求められる。赤道軌道での精密な電子密度と温度計測を目的として、Sampling rateで行う。温度のprobe-sensor discrepancyの解釈のため、Alouette, ISIS衛星データとともに赤道域観測及び伝播手延長特性研究と関連して長期間にわたるデータを得ることになる。これにより計測機によるデータ処理を行う統計的処理を行
地下30m M.W.E.における宇宙線強度の観測

森下 守夫 新一 一山総長* 喜多修二 赤羽昭信

昭和58年（1983）8月以降、約1年間連続観測、地下30m M.W.E.における宇宙線強度の連続観測が行われている。観測結果は、以下の通りである。

1. 図1 重力水平観測

2. 表1 特徴

<table>
<thead>
<tr>
<th>成分</th>
<th>方向角度</th>
<th>計数 (10^5/秒)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT</td>
<td>0°</td>
<td>96</td>
</tr>
<tr>
<td>V</td>
<td>0°</td>
<td>28</td>
</tr>
<tr>
<td>E</td>
<td>N,S,W</td>
<td>14</td>
</tr>
<tr>
<td>BB</td>
<td>83°</td>
<td>4</td>
</tr>
<tr>
<td>NW,NE</td>
<td>32°</td>
<td></td>
</tr>
</tbody>
</table>

*：地質学、工学、物理

この結果は、空間線のエネルギーレベルと宇宙線強度の関係を示しており、より詳細な解析が必要である。
地下50 M.W.Eにおける宇宙線強度変化の解析（II）

一之穆臣, 坂戸雄, 榎野, 安江, 新一

宇宙線変化の太陽時変化の振出, 位相が Interplanetary magnetic field
(1. M. F) の Away (Θ), Toward (Θ) によって変化することや Swinson さ
の地によって推進値, Θの原因は日食と plane に垂直方向宇宙線の density
gradient が存在することによって進行されている。我々も 1971, Apr ～ 1972, Dec
までの地下50 M.W.Eにおける data, Θが同期間の Neutron, Ion chamber, 被害者
の直線度図から計測の data を用い, 1. M. F の Θ, Θによる変化を解析し研究者会で報
告した。しかし, 1. M. F の向きによって直す宇宙線の磁化性の方向は必ずしも 1. M. F
に直角な方向 pamph 3 h ～ 5 にそれなし。又名古屋大学グループは薬物性における高精度
度図を同図から 3 h による解析から, 1. M. F の Θ, Θ による宇宙線密度性または 1. M. F にそ
った宇宙線の推進によって進行するまで注意を指摘している。

現在地下50 M.W.Eにおける全能測値 (1971, Apr ～ 1972, July) Θが同期間の
Neutron data を用い, 全て薬物性を含む宇宙線密度性と 1. M. F との関係を研究中
である。Fig 1 に Vertical の値を用いて結果を示す。印は全能測値を用いた場合で
Θ, ① は 1. M. F の Θ, ① が 3 時以上続いた日のみを用いたものである。全能測値も
①と同様にして示されるが, プロの期間においても約 15% の直進のずれがあり, その方
向を時間に示している。他の成分及び Neutron を用いて結果も含めて, 1. M. F と不
正密度性との関連について報告する。

![Fig 1](image-url)
宇宙線中性子成分気圧係数の長期変動

千葉敏聰
岩手大学・教育

宇宙線中性子成分気圧係数の長期変動を対象に、様々な観測結果を比較検討した。その結果、短期間の変動を考慮に入れると、各ステーションにおいて観測された気圧係数の変動に注目される。特に、Deep Riverの観測データが示した変動パターンは注目すべきものである。各ステーションにおける気圧係数の変動は、月単位での変動を考慮に入れることで、より適切に解釈されることが示唆される。
宇宙線近日変化と太陽活動度（Ⅲ）

石田英昭*、菅野常吉**、齋藤俊子***

第十一回大・放送***

前々回までの新しい宇宙線近日変化所見があるため、多くの観測地点で、近日変化的発生の観測結果は、平均して約10%程度に寄与することである。これより、〈Tmn3〉（年平均値）は太陽コロナ活動度（T10.7）と大気変動相関があり、Deep River（SN）、Ottawa（IGY）等は正相関である。（A）Deep River、Ottawa等の〈Tmn3〉や（年平均値）の空間での異方性は、太陽活動期に比べて波動方向に寄与する。静区間には約17°方向にあることが（C）各地点において、全期間を通じて一貫性の異方性を示す。そこで、この通過の異方性が存在しない方向があり、その方がはっきりpeakからみて、約2時間以内に、地点により多少のpeakの前後に変化していることを見た。前回測定の報告をもとなかったものので、その分をふくめて報告する。

II. 〈Tmn3〉と太陽電磁フラッグ入

各観測点で出版した9400 MHz, 3750 MHz, 1000 MHz, 1000 MHzの太陽電磁フラッグ入（それぞれ9400 MHz、3750 MHz, 1000 MHzでおよび支）の年平均値（〈Tmn3〉）と〈Tmn3〉との相関をみると、多くの場合は〈Tmn3〉の方が位相が遅れ、太陽電磁フラッグ入を遅らせると、かなり良い相関が得られる（吉田、水野）。各地点での相関について報告する。

III. 〈Tmn3〉と太陽面積の関係について、平均的な変化にあるようになるか、さらに詳細に検討すると、RomeやOttawaなどでは若干変化のある様子があるもので、それらについての検討の結果を報告する。

IV. 〈Tmn3〉のその長入出を含めた追加資料も加えて前回の報告を補う予定である。
宇宙線強度変化の三次元的解析

安江新一，森覚，長島一男
（信大理工）（信大理工）（名大理）

Forbush decrease における宇宙線強度変化を、三次元的にお心配解析して得られた reference axis の方向と、測定局空間座標の方向を比較することにより、特に 1968 年の 11 月における Forbush decrease における宇宙線強度変化を、下記の方法で解釈される結果が得られることを示す。以下、測定局における宇宙線強度変化を示す。

1. reference axis に沿って軸方向の宇宙線分布

2. radial 方向の押出しによってもたらされる参考方向分布

\[F_1(x) = \frac{3}{4\pi} \rho_p (4\pi x) \]

\[F_2(x) = \frac{1}{2} F_1 (4\pi x) \]

という 2 つの軸対称の分布を仮定する。実際の分布は、\(F_1 \), \(F_2 \), \(\rho_p \), reference axis の方向（\(\alpha \), \(\theta \)）及び変化スペクトル（\(\delta \), \(\beta \), \(\eta \)）も考慮した。従って、これらの条件、reference axis の方向（\(\alpha \), \(\theta \)）は大きいこと、ならびに直接観測で得られた磁気圧力（\(\beta \), \(\eta \)）も、Solar wind velocity の大きなときに理论的に保持されることが期待される。

1968 年 1 月と 10 月の Forbush decrease をとり上げて、上記の方法により観測の結果要約データとその代表値について観察する。
宇宙線中性子電荷計

宇宙線中性子電荷計は、宇宙線の研究に不可欠の道具であり、その衝撃電荷がModulationときの研究対象になっている。一方、一般放射線の影響などでみられる場合、その探用法は検討が必要である。ここでは宇宙線中性子の水による吸収を利用し、その水温を測定する方法について述べる。

1. 探用条件下は、気象学的な探用条件のみにて、水温線、補償放水等を考慮するに重要である。測定した地スパンや時間の将来的な確率を適切に伴ううえで、その測定精度、測定数、計算方法等についてもう少しですが、放射性同位元素の吸収を使用した測定はより確かなものである。放射線の吸収係数が大きく実用的となり、1m以上の水当量測定は困難である。1m水当量に1m水当量の吸収係数を示す例を挙げると、

宇宙線放射性同位元素の吸収をとる場合、以下の条件がある。

1. 1m水当量を必要としているため、吸収を小さく、水温をただ単に、任意の水温値を一定とするのが望ましい。水分のためのの影響をはらむことなく、観測値の正確を求める。

2. 吸収係数が大きくなるため、数M水当量まで測定する。

3. 吸収値を出すためには、探用する放水数を知らなければならない。この時間変動の敷正を行う必要がある。

4. 水温線の測定は、比較的長時間の平均値に意味があるもので、実用的装置で行うのが望ましい。これら吸収量の測定値は、時間変動の補正で有効性に影響を与えるが、

以上の条件から、まず実用性のある探用条件の選定を考え、中性子測定を含む、以下の実験を行った。

測定装置は、日本気象学会所献によるもの、1m水当量WS計を用いた。1nHがスキャット1m水当量に相当するもの、この水当量3.7cmのパラフィン内桶で囲んだ。ここでA型が呼べる。さらに2cm水当量3.7cmパラフィンをいれたインクで囲んだものもA型と呼ぶ。

地表に1cmもあたって、1cm水当量150cmの回転水槽を用いて、水温を変える、吸収値を測定した。計測が少ないもので、1点1日前後間の時間もかけた。30cm水当量測定ではあるが、次のように結論を得た。

A型は水当量約700℃（每時計数）約8cmまですでに30%減少し、その水当量約0.07cmで下る。B型は300℃が還元され、0.011cmの吸収値が吸収される。

これを、次のように算出するもので、Scm以下N当量N当量と呼ばれる。

\[NS = N0 \exp \left(-\mu S \right) \]

\[S = \frac{S_0}{\mu} - \mu N N \]

これで、N0の計測値のものを、Scmともに下にNSをたすと、NSの値を計測する常数をScmとすれば、\[\Delta S = \frac{\Delta N}{\mu N} \]

相対誤差は\[\Delta S/S = 1/(\mu S N) \]とある。NSと100℃、μ＝0.011cmのとき、S当量、\[S = \frac{S_0}{\mu} + \Delta S/S \]を計算した。これにより、B型の吸収値を0.011cmに変える。この方法で、約3時間の測定により、Sが変化し、\[S_0 = 0.23cm \]で、\[S = S_0 \]を求める。同じく、\[S_0 = 0.23cm \]を求める。
宇宙線強度短周期変動とKp-index

藤本浩司, 近藤一郎, 長島一男

観測高精度多分野的研究のデータにより、宇宙線強度変動には少なくとも2週期成分および連続スペクトルを持った変動成分が存在すること（Fig. 1）。この変動成分は、週期1時間以下の短周期成分が、観測の主な時系列データであるKpと主の相関をもつと変動する傾向があることは既に報告した。今回、さらに1971年から1974年までの長期にわたるこの短周期変動成分とKp-indexとの関係について調べた結果について報告する。

Fig. 1, Fig. 2, Fig. 3
風速は70年代後半に増加している。

図1: Syowa Base, July, 1970

風速曲線の傾向は以下の通りです。

100 mb: 1970年7月の風速は20 m/sから30 m/sに変化しています。
150 mb: 同様に風速は25 m/sから35 m/sに変化しています。
450 mb: こちらも同様の変化が見られています。

図2: Syowa Base, December, 1970

風速曲線の傾向は以下の通りです。

100 mb: 1970年12月の風速は20 m/sから30 m/sに変化しています。
150 mb: 同様に風速は25 m/sから35 m/sに変化しています。
450 mb: こちらも同様の変化が見られています。
緩中間子の実験研究

田中理（理化学研究所）

セクション8

(1) Dorman: "Cosmic Ray Variation", Moscow, 1939 で、セクション8.2に実験結果の部分がある。

(2) "Dorman"の影響は、気体の密度変化

\[SD = S_I = \int W(A) I(A) dA \]

と表現される。\[S_I = S_I + \beta S_I \]

しかし、Dormanの影響は、実験結果に比べて決定的なものである。

第1表

<table>
<thead>
<tr>
<th>N</th>
<th>1972-73</th>
<th>1972-73</th>
<th>1972-73</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.972</td>
<td>1.973</td>
<td>1.972-73</td>
</tr>
</tbody>
</table>

\[\alpha > 1.4 \times 10^{-2} \]

\[\beta > 0.2 \]

気体密度は、緩中間子の密度比を減衰させさせる。
一个简单的实验可以用来测量小粒子的响应。实验装置由一个粒子探测器组成，粒子从一个指定的源点发射出来。探测器可以是光电倍增管，它可以检测到粒子的能量和方向。实验过程中，粒子通过探测器，探测器会产生一个电流信号，这个信号可以被记录下来。通过收集大量的数据，我们可以计算出粒子的能量分布，从而推断出粒子的性质。
10^{11} - 10^{14} eV の一次宇宙線かうすシャワースについて

長見一男
名大理

Rigidity R, R + dR の Primary cosmic ray の光で電子一電子-μ- seul を地上で観測する場合、期待される Flux = δ(R) dR 均で、Total flux = ʃ δ(R) dR を計算し、観測される AS とそれに対応する Primary cosmic ray の Median rigidity を求め speaker である。

計算で用いる仮定は
(1) Primary rigidity spectrum iz Ryan のそれと High rigidity side に延長し、Heavy particles の spectrum と同じ型とした。
(2) Total energy U の proton は 3 e および μ-の印数 N_e (U), N_μ (U) は Dixon の計算を用い、重量数 A の Heavy particles は大きく、A N_e (U), A N_μ (U) とえて μ-を除もしたものとした。
(3) AS の Lateral distribution で N-K 図示、μ-の Greisen のポ Nó ものを使用した。

計算結果は、地上の観測（特に AS の Decoherence curve）をより一致を示し、顯示方法の妥当性を確認した。

下図は、観測される AS と R との関係を示したもので、地上、地下の μ- meson 観測と比較している。以下の AS と 2 3 の特徴は
1. μ- AS の median rigidity は 2 ~ 3 × 10^{10} keV で地下 60 m のものと 10 倍である。\text{Flux} \text{ is } \text{3} \times 2\text{ × 10}^{19} \text{ keV}^2 \text{ m}^{-2} \text{ s}^{-1} \text{ eV}^{-1}
2. μ- AS は Primary heavy particle の影響が大きく、両 Flux の比率を考慮した。
3. Heavy particle の影響により median rigidity が著しく低下している。
磁気圏擾乱時の低頻度地磁気脈動

高橋光策
著者：高橋光策

地球の活動として、substormに密接に関連するとされているPc1's、Pc2's、Pc3's、Pc4's等のhydromagnetic emissions、sc等、特に中高頻度において観測されている。これらの発生は、地球の内部構造の変化を反映しているとされる。

このことから、特に低頻度Pc1'sの観測は、地球内部構造の変化を反映していると考えられる。

観測結果は、Kakioka（緯度26°）における1969-1971のinduction dataである。

解釈としては、低頻度Pc1'sの観測は、地球内部の活動を反映していると考えられる。
誘導磁力計のセンサーを用いた高μ-金属コイルと空芯コイルの比較研究

上田一雄

誘導磁力計のセンサーを用いた空芯コイルと高μ-金属コイルの比較研究における測定結果について述べる。そのためには、空芯コイルの特徴や高μ-金属コイルの特徴を説明し、両者を比較する。測定した結果は、高μ-金属コイルの方が空芯コイルに比べて感度が高いことが示された。

空芯コイルは、空芯を有するコイルで、磁界を直接測定するのではなく、磁界の変化を測定することで、磁界の強さを把握する。一方、高μ-金属コイルは、μ-金属を用いたコイルであり、磁界の感度が高いため、微弱な磁界をも正確に測定することが可能である。

両者の比較において、高μ-金属コイルは、感度が高いが、一方でコイルの寸法が大きくなる可能性がある。これに対して、空芯コイルは、帯電導体を用いたため、寸法が抑えられ、小型化が可能である。

これらの特性から、実際の適用においては、用途や要件により、選択する必要がある。
Interplanetary Magnetic Field and Geomagnetic Micropulsations

Gerard Nunnery

1-80

太陽風の影響を受ける地球周辺の磁気場について、大気の噴気と磁気波の相互作用について論じている。太陽風の変化が地球の磁気場に及ぼす影響は、地球大気の噴気と磁気波の相互作用を示すもので、特に磁気波の変化が考慮されている。

太陽風は地球の磁気場を変化させ、この変化が地球の気象に影響を与えると考えられている。太陽風の変化は地球の大気噴気と磁気波の相互作用を示すもので、特に磁気波の変化が考慮されている。

太陽風の変化は地球の気象に影響を与えると考えられている。太陽風の変化は地球の大気噴気と磁気波の相互作用を示すもので、特に磁気波の変化が考慮されている。
セクション 9

シューマン共振と平面波入射について

折上 裕

シューマン共鳴周波数帯域（3〜30 Hz）では、前出の材料を用いてシューマン理論の基礎的状態を説明する。最も重要なのは、各共振周波数において共振のモデルとしてのモード理論が提案されている。モード理論は、共振経路が平面波入射の場合を含む、モード理論を用いることにより、共振経路の非線形性を考慮に入れた上で、共振経路の非線形性を考慮に入れたモデル理論を提案する。モード理論は、平面波入射の場合を含む、モード理論を用いることにより、共振経路の非線形性を考慮に入れたモデル理論を提案する。モード理論は、平面波入射の場合を含む、モード理論を用いることにより、共振経路の非線形性を考慮に入れたモデル理論を提案する。モード理論は、平面波入射の場合を含む、モード理論を用いることにより、共振経路の非線形性を考慮に入れたモデル理論を提案する。モード理論は、平面波入射の場合を含む、モード理論を用いることにより、共振経路の非線形性を考慮に入れたモデル理論を提案する。モード理論は、平面波入射の場合を含む、モード理論を用いることにより、共振経路の非線形性を考慮に入れたモデル理論を提案する。モード理論は、平面波入射の場合を含む、モード理論を用いることにより、共振経路の非線形性を考慮に入れたモデル理論を提案する。モード理論は、平面波入射の場合を含む、モード理論を用いることにより、共振経路の非線形性を考慮に入れたモデル理論を提案する。モード理論は、平面波入射の場合を含む、モード理論を用いることにより、共振経路の非線形性を考慮に入れたモデル理論を提案する。モード理論は、平面波入射の場合を含む、モード理論を用いることにより、共振経路の非線形性を考慮に入れたモデル理論を提案する。モード理論は、平面波入射の場合を含む、モード理論を用いることにより、共振経路の非線形性を考慮に入れたモデル理論を提案する。モード理論は、平面波入射の場合を含む、モード理論を用いることにより、共振経路の非線形性を考慮に入れたモデ
シーマン共振周波数の1日変化

棚橋 秀政（名古屋電気）

1. シーマン共振周波数は（電子数）が日変化することはよく知られている。BSliokh (1968) は地球表面磁場の変化によって、電子が UT 位置の 1 日サイクルの変動を示すことができ、これに基づいて Nikolaevsky (1971) はニッコルソースを用いて地球の電子の変動の説明を試みている。すなわち、(1973) 仏領領上部の太陽電気収が対数が基、周波数等が、1 時間等に変化するという。特に、1 時間等の変化は著しい。

\[
N_e = 0.583 \cos \omega t + 8.462 \quad \omega = 27.76 - 7.36 \cos \omega t \quad \omega \approx 20
\]

2. 電離層モデル： 電子密度は前田 (1967)、側壁面積は Daeke (1966) のプロフィルを参考にし、かつ反射をも \(w_0 = \omega \approx 10^5 \) と仮定して、次の式に、電離層 \(N_e \) を持つ一層電離層の太陽電気収を各層の状態で計算する。

\[
H_0 = \frac{-2h}{\omega_0} \sin \alpha \left(1 + \frac{1}{2} \cos \omega_0 \right) \quad \phi = \beta + \varphi - \lambda \gamma
\]

3. 電離層の太陽電気収 \(H_0 \) は、\(\omega_0 = \omega \) と仮定して、

\[
\omega = (\omega_0 / 2 \pi) \sqrt{1 + \frac{1}{2} (\omega_0 / 2 \pi)^2}
\]

4. 電離層面のイニシエンス \(H_0 \) は、BSliokh によって、

\[
\omega = \sqrt{4 \pi / 2 \pi} \sqrt{1 + \frac{1}{2} (\omega_0 / 2 \pi)^2}
\]

電離層密度 \(N_e \) の変動は、Maxwell の方程式で求められる。

5. Slater (1957) によれば、電離層の密度は、真空中の密度 \(N_0 \) で、

\[
\frac{dN}{dt} = \frac{1}{2} \left(A + \frac{1}{2} \right) N \quad \frac{dN}{dt} = 0
\]

6. 視域の共振周波数 \(f_c \) は、

\[
f_c(t) = \exp(-\omega_t) \cos \omega_t \]

7. 計算結果は石田の連絡で、

\[
0 \quad 12 \quad 14 \quad 16 \quad 18 \quad 20 \quad 24 \quad UT
\]

8. 計算結果の比較は、

\[
\text{計算結果} = \text{実測値}
\]
ELF帯空電の波動インピーダンス測定

佐尾和夫 山下秀子 太田幸一
名古屋大学 空電研究所

3 kHz以下のELF帯電磁波は特殊な実験計測のため電波局が少ないため、電場の変動の影響を受けやすい自然電波のみである。ELF帯電磁波は地球と電離層で形成される導波管内を伝搬するが、従来から行なわれてきた乾電極の電極波の測定は電離層と大地の電気的性質に関する情報を得るよりもむしろ電極波の受信特性や電極波の波の影響をうけることが多い。

そこで低気電離層の電気的性質の情報だけを得るには波動インピーダンスを測定すべきである。

W4の理論を用いると波動インピーダンスE₀は下記のようになる。

\[
Z_0 = \frac{E_0}{H_0} = \frac{1}{120\pi \cdot \sigma_0} \left(1 - \frac{\xi \cdot A_{s0}^2}{\xi - \tilde{S}_0} - \frac{\xi}{\tilde{S}_0} \right)
\]

自由空間内の波流は進波距離S₀はモード方程式を満たす2次モードの根であり、最も簡単な電離層模型を仮定すれば次の通りである。

\[
S_0 \approx \left(1 + \frac{C}{2\sqrt{\omega \cdot \sigma_0}} \cdot \frac{l}{\lambda_{20\sigma}} \right) - i \frac{C}{2\sqrt{\omega \cdot \sigma_0}} \cdot \frac{l}{\lambda_{20\sigma}}
\]

\[
Z_0 = |Z_0| e^{-i\theta}
\]

\[
\theta \approx \left(\frac{C}{2\sqrt{\omega \cdot \sigma_0}} \right) - \frac{l}{\lambda_{20\sigma}}
\]

\[
\text{\(C\)}: \text{電離層の高さ}
\]

\[
\text{\(\mu\)}: \text{電離層の導電率パラメータ}
\]

足の作成は周波数が低い程、値は大きいので日下250 Hzで測定を行っている。

本文は最近の測定結果をEPSについて述べるのはすむものである。
Abstract——The mechanism of reflection of VLF and ELF radio waves in the anisotropic lower ionosphere whose conductivity parameter varies exponentially with height is discussed. Superposing the Gaussian-shaped perturbation on the unperturbed profile, we study its effect on the reflection coefficients for various locations of the perturbations. Then the results on the levels where reflection takes place are compared with those for the isotropic ionosphere.
Magnetopause 附近での ELF emission

18 Jan. 1969

A: Shock
B: Magnetopause
MORPHOLOGIES OF LOW-LATITUDE AND AURORAL VLF 'HISS'

Abstract--- Low-latitude VLF hiss has been considered to be the consequence of the earth-ionosphere waveguide mode propagation of auroral hiss since the work of Jorgensen (1966). In this paper, however, we show that the features of low-latitude VLF hiss are significantly different from those of auroral hiss and that the low-latitude hiss is essentially different from the auroral hiss by using the extensive comparison of their morphologies. The study of low-latitude hiss has yielded that there are two types in low-latitude hiss, one is not associated with magnetic storms (quiet-time hiss) and the other closely correlated with magnetic storms (storm-time hiss). Further, the storm-time low-latitude hiss can be divided into evening and morning hiss and the difference between them seems to be closely related to the asymmetric structure of the plasmasphere.

Anriel-3 による VL フレックスの変動に関する考察

1967 年 5 月 25 日に発生した大気変動（日本で 1967 年 5 月 5 日）時の、Anriel-3 による VL フレックスの変動結果です。この変動については、サイクロトロンの安定に影響を及ぼすものであるということが示されており、サイクロトロンの激減に伴い、朝方側と夕方側の変動に相違が生じています。この変動については、詳細な研究が必要であると考えられます。
SATELLITE AND GROUND STUDY OF MAGNETOSPHERIC VLF HISS ASSOCIATED WITH MAGNETIC STORMS

Abstract——The purpose of this paper is to make clear the characteristics of magnetospheric VLF hiss during storm times. The study is based on the VLF observations on board the Ariel 3 satellite as well as on the ground during the severe magnetic storm of 25-26 May 1967 and the moderately severe storm of 5-6 June 1967. Soon after the onset of main phase, there appeared the VLF hiss in the morning sector of the magnetosphere ("morning hiss") on the satellite as well as ground record, while the hiss is not observed in the evening sector. It was not until during the recovery phase that we could recognize the stationary occurrence of strong VLF hiss in the evening side of the magnetosphere ("evening hiss"). The importance features of the morning and evening hiss are described and some discussions concerning their generation mechanism by the ring current particles are given.

References,

(1) Satellite and ground study of magnetospheric VLF hiss associated with the severe magnetic storm on 25-26 May 1967, accepted for publication in J. Geophys. Res.
Alouette 2 号及び ISIS 衛星で観測した VLF 電導データ（50 kHz から 30 kHz）を含むデータベースの一部を用い、A チャネルの磁気変調データを基に、Minimum Reading 回路（共振電流を含む）を導入し、対数増幅コンパクターを用い、結果をブロットした。各チャネルの波長は 300 kHz, 1.5 kHz, 50 kHz, 80 kHz, 160 kHz, 256 kHz で変動する変動帯にパラメータを配置し、こうして得られた VLF データは衛星の一部の VLF 活動を一目で見ることができ、フィールドに携わる方々に便利である。

新しい得られた結果を要約すると

1. 地磁気不規則度 L = 47°から 59°の間でパルスを含む VLF ヒストグラムの検出率が
 あり、そのスペクトルは上昇および下降する傾向が見られ、その
 50 kHz 以下の VLF 活動との関係は明らかではない。

2. 高度分析を行なうと、高度が 0℃から 2000 km で観測したデータ中にはしばしば 17.4 kHz の人
 工信号が入っている。振幅のデータと 16 kHz の強度増加として現れている。この
 17.4 kHz 機長は L = 26.5°の 4.5°以下の地理的幅を 17.4°の 2 で割って得られる
 値と一致する。振幅比の変化から 17.4 kHz 機長のホイールスローと同様の
 信号が見られる。
実験の概要

打ち上げ時：1974年9月15日 20時40分 LT
最高高度：333 km

PWP実験項目
①大角度Electron Cyclotron Harmonics Wave による非線形波動一波動及び波動一粒子相互作用の実験
②電波ビーム一波動相互作用の実験
③プラズマ波動の振幅測定の実験

実験装置

実験結果

W.B. VLF帯エミッションの解析は未だ行なわれていないが、発生時に
は報じてきよう。

図はTM帯の一部である。
低緯度ポインティングの入射角・方位角及び偏波の観測結果
—単一因子法による測定—

村田敏
岩井章

渡鴨大学工学部
岩崎大学工学研究科

(1) 低緯度ポインティングの入射角・方位角及び偏波の観測結果の詳細についての説明

低緯度海域においては、入射角・方位角及び偏波の観測結果が重要である。この際、ポインティングの測定は、光学的測定方法を用いることが有望である。

図1 (a)は波による入射角と方位角の関係を示す図である。図1 (b)は波面での入射角と方位角の関係を示す図である。図1 (c)は波による入射角と方位角の関係を示す図である。

(2) 低緯度海域における観測結果

図2 (a)は観測した入射角と方位角の関係を示す図である。図2 (b)は観測した入射角と方位角の関係を示す図である。図2 (c)は波による入射角と方位角の関係を示す図である。

(3) 低緯度海域における観測結果の解析

図3 (a)は波による入射角と方位角の関係を示す図である。図3 (b)は波による入射角と方位角の関係を示す図である。図3 (c)は波による入射角と方位角の関係を示す図である。

(4) 低緯度海域における観測結果の解析

図4 (a)は波による入射角と方位角の関係を示す図である。図4 (b)は波による入射角と方位角の関係を示す図である。図4 (c)は波による入射角と方位角の関係を示す図である。

87
低線度ホイッスル入射角方位角及び偏波の測定
-矩形波方式への拡張--

岡田敏美 岩井章

群馬大学工学部 名古屋大学航空研究所

（序）著者は、既に同型式による観測装置が示されたが、ホイッスルの伝播状況を、さらに詳しく検
えるためには、測定周波数帯域を3kHz～6.5kHz程度までに拡張する必要がある。

Field Analysis Methodを矩形波方式へ拡張する場合、必要とされている点を示すと次のような。

(1)アンテナ-磁場機器
 (a) Loop antenna の実効高 hung の周波数特性を保証すること。
 (b) Loop point と Vertical point の得位、相相を矩形波に近いものに一致させておくこと。

(2)散場比較器、位相比較器
 それぞれの信号を解釈するもの。f=3～6.5kHzの矩形波出力の場合、十分応答すること。

(3)小数点以下のデータは、波の打ちの何KHzにおける測定値であるかが明確に判別できる
こと。

等である。ここでは最も重要なと思われる振幅・位相差計器の試作器の開発段階に位置してシステムの経験を行なう。
(原理) 荷重・電流を線状に直列リレーインダで調節する信号をそれぞれ E_x=E_x(0)wt、
H_y=H_y(0)wt を与える。ここで、E_xを振幅で、φを相位角を表す。

H_xとE_xを発射しない。その出力をLRFとHPFによって分離する。HPFを通った信号は矩形波
検波を施す。また、H_xとE_x（φ_x）についても発振を行いLRFを通った信号とする。

H_x E_x = A_x E_x
H_y = A_y H_y

同様にして、H_xとE_x、H_yとE_yの関係も得られる。

H_xとE_xより
A_x A_y cosφ_x ≡ (1)

H_yとE_yより
A_x A_y sinφ_y ≡ (2)

φ_xとφ_yは、(1)と(2)よりφ_xとφ_yをそれぞれ同時に決定できる。なお、(2)の振幅比A_x/A_yが
(2)の φ_x/A_yが決定できる。

応答例

参考文献

①電磁気学におけるホイッスルの実験方法
②波の伝播、岩井・村井・吉野塚、講談社、1973
③Pogo 場所で観測された VLT 星系
④LASY シンポジウム、1969
セクション10

ホイールの分散の実時間測定法

開田敏之 岩井章

群馬大学工学部 沖縄県立電気通信研究所

(序) ホイールの研究において、発生特性と分散を測定することが重要であり、その結果を電気特性において検討されている。ところでは、電気特性は電気信号の特性を要因としており、伝統特性等の研究にあたってはここに重視しつつなければならいない。これらの観測実験により、伝導特性の高い散乱を望む。またレコーディング系の特性は多くの因子を含んでおり、また分散特性の測定の目的は高い準挙である。分散の発生数のヒストグラムを自動的に測定するシステムを実現できれば高い精度をもたすホイールのセンサを得られ、現象の理解を得るために、 Fresco型のシステムを併用すれば、さらに詳しいホイールの研究が可能となる。

ここでは、分散の発生数を実時間で測定する分散検出器について述べる。

(理屈) ホイールの発生特性は、適当に選ばれた複合振動を入力すると、分散検出器に入力する検測出力が電流をもって現われる。この電流はリークが自験関係を実時間で測定し、基本的特性を検出する。周期と分散の関係関係を分散が得られる程度である。自己相関法によって、分散の発生特性を測定する分散検出器により検測出力を作ることもできるものである。

(検測出力のシステム)
VLF標準電波（NWC）の
ホイッスラー・モード受信

内藤茂史* 加藤 邦* 荒木 輝**
* 京大工 ** 京大理

低頻度でのVLF電波のホイッスラー・モード伝播特性、及び、磁気圏プラズマのパラメータを調べる為に、オーストラリアのNWC局（22.3 kHz、1200 km）のVLF標準電波のホイッスラー・モード伝播波を用いた受信実験を行い、受信装置の改良を図っている。

最も基本的な検出方法としては、導波管モード伝播と、ホイッスラー・モード伝播の伝播周波数の差（200−300 kHzのオーダー）を利用して、送信局が導波する際に、すばる導波管モード信号波、それに達してホイッスラー・モード信号波の順で受信信号が消減することを検出する方法である。

9月1日より8日までの8日間、電磁通信大学の飯田課により、長野県遠野の電磁
通信大学電波観測所において観測させ、合計47回の観測の際に信号を録音し、リ
ガープラフで用いて解析を行った。又、その他にも、1971年3月13日より9日までの
4日間、約30回の録音データの再解析もあわせて行い、ホイッスラー・モード伝播が存在
することを示す結果が数例認められたので報告する。

この他の受信実験としては、ループアンテナの指向性を利用して、導波管モード波
が最も弱くなる状態にセットした受信機を用い、ドップラー位相を受けたホイッスラー・モード
波が存在する場合に、受信機は導波管モード波とホイッスラー・モード波の合成波を受信
する考え、その位相変調の観測を行、これによる実験、並びに、ホイッスラー・モード波
のドップラー位相を直接接続するスペクトルアナライザー型受信機の開発、実用化の
実験を行っている。適当なデータが得られれば、お知らせ報告したい。
Properties of Low-Latitude Whistler Ducts Deduced from the Rocket and Ground Observations

 proprietà, 田中義人, 緒形幸 (名古屋大学)

The measurement of wave normal directions of low-latitude sunset whistlers is carried out by using the crossed loop aerials on board the rocket of K-SM-41. It is found the features of whistler wave normal directions are quite consistent with the concept of trapping cone for ducted propagation. In addition, the properties of wave normal direction of ionospherically transmitted whistlers lend us further strong support to the ducted propagation of sunset whistlers. Then we deduce the enhancement factor, scale and structure of sunset ducts by making use of the correlated work between the observed results and theoretical ray tracing studies. The obtained enhancement factors are compared with the ground result and then they are in good agreement with the result by ground whistler dispersions.

実験では、ホイッスラー空洞の到達方向を測定し、これによりホイッスラー空洞の真観面における運動を調査した。到達方向の測定装置の開発に取り組んできた。その実験では、到達方向の測定装置の開発は、測定精度の向上と、測定データの処理方法の高速化を含む技術的な問題を扱っている。したがって、測定装置の精度向上と、測定データの処理方法の高速化を含む技術的な問題を扱っている。

(図) 測定精度向上と測定装置の開発に対する解釈例

\[N_x = \sin^2 \beta \quad N_y = \sin \beta \cos \beta \]

実験装置に使用されたホイッスラー空洞の測定装置は、13°x20° (Hg) と示されている。
衛星-地球 V L F 同時観測 - II

1973年9月 - 1974年2月に衛星 (L 3,5 - 1, 2) と地球間観測 (geom. lat. 34°) の V L F ポルトフヌア-ゴブリッチ同時観測を行い, 大気圏, 太陽電流, 直接応答を検討した。

1973年10月1日 - 07.30 - 07.45 (UT, 下)
衛星 (L 3,5 - 1) 距離 1200 - 3500 km, geom. lat. 51° 39' N

1) 助電流は常に助電流 - 1, 2 的電流を流すが, V L F 波の強度は減少するが, その影響は見られない。

2) 助電流に零助電流 55, 60 個の multi-frequency 頻率を含む一例を報告したい。

3) 地球波の上昇と下昇を増幅し, 同時観測が実施されているが,

4) 助電流の直順伝播は, 通常, 地球波の伝播に比べ, V L F 波の伝播が短くなっている。
衛星上で観測したホイツラージー・エコーから求めた
ホイツラージー・ダクトメソッド

藤井 忠典 上海ら

地磁気研究所

衛星上で観測したホイツラージー・エコーから求めたホイツラージーの初めの時刻（緯度）とホイツラージー・エコーの終りの時刻（緯度）を測定することによって、ホイツラージーのエネルギーがアラブ圏内を伝播する有効な情報が得られる。すなわち、ホイツラージーのメソッドから、事前のデータを用いて、地磁気変化とホイツラージーの関係を求める必要がある。この関係を、

\[D = \frac{R_{h} \cdot (\frac{\Delta t_{20}}{\Delta t_{10}}) \cdot \cos^{2} A_{c} \cdot (\cos^{2} A_{2} - \cos^{2} A_{1})}{\sqrt{4 - 3 \cdot \frac{(\Delta t_{20}^{2})}{\Delta t_{10}^{2}} \cdot \cos^{2} A_{c}}} \]

と求める。また、地磁気変化とホイツラージーの関係は、

\[D = R_{h} \cdot (\frac{\Delta t_{20}}{\Delta t_{10}}) \cdot \cos^{2} A_{c} \cdot (\cos^{2} A_{2} - \cos^{2} A_{1}) \]

1982年4月6日（Kp=1）にはISIS-2号（約1500 km）が約100 km、観測されたホイツラージーの時刻は、観測されたホイツラージーの時刻は、

\[D = R_{h} \cdot (\frac{\Delta t_{20}}{\Delta t_{10}}) \cdot \cos^{2} A_{c} \cdot (\cos^{2} A_{2} - \cos^{2} A_{1}) \]

と求められることから、観測されたホイツラージーの時刻は、観測されたホイツラージーの時刻は、観測されたホイツラージーの時刻は、観測されたホイツラージーの時刻は、観測されたホイツラージーの時刻は、観測されたホイツラージーの時刻は、観測されたホイツラージーの時刻は、観測されたホイツラージーの時刻は、観測されたホイツラージーの時刻は、観測されたホイツラージーの時刻は、観測されたホイツラージーの時刻は、観測されたホイツラージーの時刻は、観測されたホイツラージーの時刻を示すことができる。
第 2 会場
成層圏エアロソルとSO₂の酸化反応

岩坂泰信
名古屋大学化学研究所

成層圏のエアロソルは、レーザーレーザーによる観測、けんイオン発生器によって観測されており、高度20km中心に巨大な粒子が存在し、時間的に変化している。これらの粒子は、光化学反応が起こり、酸化反応が進む過程で、酸素と水素との反応が進行する。これらの粒子は、成層圏の酸化状態を反映し、遺伝的な変化をもたらすと考えられている。ここでは成層圏の化学反応をモデル化し、SO₂の酸化反応を考察して

\[\text{SO}_2 + O + M \rightarrow \text{SO}_3 + M \] (1)

\[\text{SO}_2 + \text{HO}_2 \rightarrow \text{SO}_3 + \text{OH} \] (2)

に対する反応性を検討したところ、反応の主反応とは考えられなかった。これらの反応は、成層圏の化学反応が空気組成を変化させる重要な一環である。

\[\text{SO}_2 + \text{OH} + M \rightarrow \text{H}_2\text{SO}_3 + M \] (3)

と推定されている。\[R = 10^{21} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \] と、DavidとHarrisonとLarsonの結果（1973）に従って反応を評価した。

計算は、光化学-凝縮酸モデルにより、化学反応はWhitmanら（1973）によるO-NO-N-O系反应とした。

(2) この計算結果を整理していると、J.G.R.とHarrisonとLarsonの結果が公表されたが、その背景の結果を示している。

References

ラマン散乱断面積の測定とその応用

図1に示す装置で図2を分けるラマン散乱断面積の測定を行い、光源としてレーザー用ヘリウムネオンガスレーザーの632.8nm線が用いられる。ラマン散乱光の偏光方向に対して平行あるいは垂直な偏光成分の強度をそれぞれ測定することがにより偏光減弱度を求める。これとレーザー散乱光の強度比から、後方散乱に対するラマン散乱断面積ベクトルを求めるように求められる。

図1の示す大気物理への応用の一として、大気の温度測定が考えられる。図2の図解でラマン散乱の各線の強度は
\[I = N_0 \exp(-jJ)Bhe^T/T \]
（\(N_0 \): 基態数、\(h \): プランク定数、\(T \): 温度）で与えられ、各線の強度を求めて、これにより大気の温度が求められる。この図解ラマン効果を用いて、屋内実験でガスクロマトグラフの温度を測定する。ガスの冷却温度に関するければ、測定される温度は283Kであった。現在は温度計についても測定中である。

<table>
<thead>
<tr>
<th>ヴァクセクション</th>
<th>震動数</th>
<th>依りの指数</th>
<th>偏光減弱度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1054</td>
<td>1.0 ± 0.3</td>
<td>0.8 ± 0.3</td>
<td>2.8 ± 0.3</td>
</tr>
<tr>
<td>1554</td>
<td>1.0 ± 0.3</td>
<td>0.8 ± 0.3</td>
<td>2.8 ± 0.3</td>
</tr>
<tr>
<td>2222</td>
<td>1.0 ± 0.3</td>
<td>0.8 ± 0.3</td>
<td>2.8 ± 0.3</td>
</tr>
</tbody>
</table>

Panel scattering cross section and depolarization ratio.
大気球B5-53によるオゾンの測定

望松隆夫 近藤富 岩上直幹 柴大理

1974年5月30日に222JSTに三陸の大気球観測所から放球され、大気球B5-53によって成田のオゾンの観測を行った。気球は放球後100分の1400JSTには高度27.5kmに達して水平飛行に移り、その後7時間にわたって26〜38kmの高度を保ちながら約220km南へ飛行した。放球535分後の2117JSTに測定器は切り離されて落下し、高度約12kmで測定器からの信号を受信不可能になった。その後、次の2種の方法によってオゾンの観測が行われた。

(1) 溶液法；ヨウ化カリウム溶液をオゾンの化学反応を利用すること。
(2) 散乱法；(和田フィルター＋光電子増倍管)によって、大気粒子による散乱強度を測定し、オゾンによる吸収量を求めること。
测定波長は2900Å、3200Å、3300Å、4500Å。

図1での結果：
図1のようにオゾンの密度分布が得られた。上昇時と下降時の値に大きな差があるが、どちらについても21km付近に一重の頂構造がみられる。その原因は、成田圏内の気象や学的変動を考慮することで考えられる。

図2での結果：
センサーは上昇方向に1分、水平方向に10分の周期で全天をスキャンしており、測定される散乱光のセンサーの方向及び太陽の天頂角に対する依存性から、オゾンによる吸収量を求めることができる。図2にその簡単な例を示す。センサーの視線の天頂角が太陽天頂角と同じ場合、

\[I = I_0 \exp \left(-\int_0^H \eta(x) \, dx \right) \sec \alpha \]

ただし、\(I \)を\(\sec \alpha \)に対してプロットすればその直線の傾きから、

\[\int_0^H \eta(x) \, dx \]

を求めることができる。

図1 溶液法

図2 3300Å

\[\ln I = -0.034 \sec \alpha + \text{cst.} \]
大気球に搭載された (1) オゾンセンサー（KI 溶液）、(2) 紫外吸光計、(3) 紫外散乱計の結果を、過去の観測ロケットの測定結果と比較することによって 0 から 100 Km までの層間の典型的な大気オゾン密度の高度分布（GRL Reference Ozoneosphere）を作成した。

結果は下図に示したようであるが、夜間における観測結果 (Stair et al.) および理論計算 (Ogawa-Shimazaki, 1974) と比較した。
気球高度におけるO₃とCO₂の観測について

早川幸男, 飯島淳, 伊藤浩治, 松本敏雄, 小野光良

高大林

紫外線放射の気球観測を行った際、波長12 - 18 μmまで地球大気する波長の放射が観測された。これはO₃とCO₂によるもので、放射強度の高度変化から23 km以上におけるこれらの分子の密度が得られた。

観測装置は反射鏡の焦点に光伝導素子Cd-Hg-Teを置いた長径23 cm、短径14 cmの望遠鏡で、検知器のみならず鏡表面に吸収帯を有機合成材料で冷却し、装置自身の放射を抑えてある。望遠鏡の光軸を仰角30°に保つ。発射軸の周りの回転で天球を回し、入射光の波長域を4枚のフィルターF1 - F4で同時に送り出し、Tuning Forkで800 Hzに変調化した。フィルターの透過程率F検査が図に示す。

放射後1時間の間で高度23 kmに達したとき鏡筒のふたをあけた。気球は上昇を続け高度31 kmで水平飛行に移った。気球上昇中、F1 - F3の信号強度は著しくなかったがF4の強度は有効で、しかも上昇と共に低下することがわかった。測定値を図に示す。

この高度では、12 - 15 μmに吸収帯のあるCO₂と、13 - 15 μmに吸収帯をもつO₃の放射が強く考えられる。CO₂については地上と同じ混合比で、O₃については等温の仮に推定されている温度で、低気温の高度変化と各成分の吸収係数を考慮して計算される強度を計算した。図中にその結果を観測値として示した。観測値と計算値が大体一致していることは、計算の基盤にしたCO₂とO₃の密度とその高度変化が大体正しいことを示す。

以上の結果は別の目的のために行われた実験の副産物であるが、この方法が上層大気の微量成分を測定するのに効果あることを示す。それ故、測定すべき成分によって適当な検知器とフィルターを送り出すことはいうまでもない。

Altitude-Dependence of Atmospheric Emission Raw Data at Wavelengths λ ≥ 12 μ

Detector Response × Filter Transmission

高気圧
SST排気ガスによる成層圏オゾンの破壊

小川利昭（東大理）・島崎達夫（NASA）

成層圏を覆体とするSST（超音速旅客機）の排出するNOx、H2Oが成層圏のオゾンを破壊する可能性については、オゾンの化学反応理論を基に、近く多くの研究者が興味を示している。このためには次元のphotochemical-diffusive modelにおいて SST排気ガス中のNOx、H2Oによるオゾンの破壊を評価する必要がある。従来の次元モデルでは散乱率を求めて説明しているのに対し、我々の方法は、自然状態での変態状態から出発し、定常的に SSTの排気がある場合の濃度変化を追跡した点で特徴がある。ただし、散乱特性を目標に、実際の変態変化が如何であるか、また、O2、N2、H2O、H2OのSSTからの排出量は、Brodie（1973）の推定値を30°緯度近の1000km経緯に拡がって求めたものとした。

1）SSTの排気する高度は、12-18km、AST（advanced SST）は主に18-21kmである。これらの高度で排出されたNOxは上方に拡散し、30km附近でNOxの濃度をもたらす。NOxの拡散を示す。

2）NOxの拡散増加によって、オゾンの消費値が高まる。しかしこれ30km以下のO3は、上記30km以上で作られたO3（odd oxygen）が下方に拡散して来たもので、この結果によってO3の消費値は上方からの拡散によっただけで、拡散が増加する。

3）NOxと同時にH2Oの排出をした場合、NOx単独排出の場合よりもO3の減少は少ない。これはH2Oが多少増加したためである（H2Oは自然状態での量が少ないからで、100年間のSST排出によっても、この変化を変化させないと考えられない）。NOxの増加率2秒、10倍に対しO3の減少は、0.9、0.7、0.7である。

4）SSTからNOx放出が10年程度経過した場合、オゾンの変化は0.7以下に減少し、さらに10年後に減少し、5年後に放出を止める。10年間の放出によって、オゾン変化実験を収容している。この値は最初の値の1/2に減少している。下限の価を常に1.01cm/secの水素を用いてNOxを観察する。50年後の放出の結果、オゾンの変化が10年後の値に回復する。このNOx回復の持続数も（NOxの回復は早いので、O3の持続数は決まるが）、成層圏のresidence timeにくいとも長く、実際の下限の変化はオゾンの変化を大きくする。このような変動は、オゾンの変化を大きくする。これによりオゾンの変動は大きく、次元でのmodelでの計算が必要である。

17）1990年代に追加SSTの排気ガスによって5年間にオゾンが約20％減少する可能性がある。このことは、SST排気が成層圏を増やす可能性を示し、成層圏の散乱環境を変化させ、気温変動にもたらされると考えられる。さらに、20％のO3の減少により、人間の皮膚に対する日焼けを防ぐ500-3100均の短波紫外線が約60％（中層度）増加し、皮膚がんの発症率が著る増加が見られている。
成層圏 NOx, HOx の日変化
小川 剛雄 (東大理)、島崎 進夫 (NASA)

一次元の time dependent photochemical-diffusive equation を用いて、成層圏微粒子成層圏の日変化を追跡した。time step は implicit method を使うので 1 min で十分である。ただし、日没・日出時には、時間を短く time step を採用した。ここに示した連続状態の解を初期値として 10 日間追跡した。

(1) O3, H2O, H2, H2O2, CH4, CO, CO2 は瞬時変数が大きくないのが、10 日の積分では殆ど変化が見られない。これらの species の converged solutions を求めた時には非常によく直接の時間積分を必要とするので、日変化を追跡しながら converged solutions を求めることが現実的である。

(2) O(1D), O3(1D), O2(3P), O2(Dg), H2, H, H2O, N2, NO, CH3, CH2O, CHO の life time の短い species は日没をともに急速に増加し、日出とともに急速に減少する。一方、HNO3 (30 km x 50 km)
H2O2, H2O, N2O, NO, CH2O, CHO は数値計算において、これらの関係は日没をもとに急速に増加し、日出とともに急速に減少する。これは、温暖な太陽面上において解離が進むからである。この関係は一日を基準として、数値はさらに association と連関するからである。

(3) 平均太陽高度での解離値を用いた「日変化の平価解」として、実際の time dependent equation に従って計算した日変化の平均値はほぼ一致される。特に時変数が一日揮発の species であるので、N2O5 の解離が著しい。N2O5 が解離すると、N2O5 の数値は減少する。続く、平均太陽高度のときの解離値を日変化の平価値とすらりには、日変化の解離係数を変数に変更する必要がある。

NO, NO2, NO, NO2 の日没後減少率は、NOx の消解が NO2 + OH + M → HNO3 + M → NO + H2O + M と関連しているのが重要である。解脱は、これらの解と関連して N2O5 は気解離で NOx にもたらされ、夜間の NOx の生成が NOx の net decomposition となるからである。これらの結果のために、NO2 + O3 → NO2 + O2, NO2 + NO → NOx など N2O5 を含む NOx からの NOx の生成も、HNO3 の生成やも NOx の net decomposition として大きい。これらの解は日没後気解離に近い NOx としている。この場合、N2O5 の生成が気解離を変数としている。
成層圈内微量成分の鉛直分布モデル

小川 利鑑（東大理）, 島崎 達夫（NASA）

成層圈の微量成分、O(4D), O(3P), O₂(1Dg), O₃, H₂O, H₂, H₂O₂, H₂O₃, H₂O₄, N₂, NO, NO₂, NO₃, N₂O₅, N₂O₆, HNO₃, CH₄, CH₂O, CH₃O₂, CH₂O₂, CH₂O₃, CO, CO₂ の高度分布を二元型 photochemical diffusion model で同時に計算した。境界条件としては、上部および下部境界での密度を与えるが、時変数をとらいない。species については化学反応の形、時変数の大きさ、時変数の形を考慮に入れ、高度も計算する。解の方法は implicit method で、他の step は 0.5 km としたい。N₂, O₂ および温度分布は標準大気の値をもとにする。これら分野の反映は 79 で採用し、また 26 ケの光解離過程を考慮に入れた。が、重要な反応の数が光解離反応と負のな解を求めていき、近年の進歩でいえば満足すべき data を示している。

(1) O₃, H₂O, H₂, CH₄, CO, CO₂ の life time の長さ、species については、温度

(2) H₂O の酸化により H₂O₃ が生成される。これは H₂O₃ の混合度は 25 km 附近から増大する。

(3) 30 km 以上では NOx catalysis が主であるのでに対し、40 km 以上では

(4) 化学的分解は、あらかじめ上部からしたがって、補うよう、30 km 以上に O₃ (odd oxygen) の主な成分があり一方、高度散乱が 30 km 以下の O₃ の分布を左右するようである。

(5) 近来得られた信頼性の高い測定法、化学光による NOx, 化学光による HNO₃ の密度

102
THE EXCITATION MECHANISM OF CO$_2$ 4.3 MICROMETER BAND IN THE POLAR AURORA

Takao Tohmatsu
Geophysics Research Laboratory, University of Tokyo

From the studies of the excitation processes involving the secondary electrons in the polar aurora, it was found that the nitrogen molecules are considerably excited vibrationally in the lower thermosphere and the upper mesosphere. The vibrational energy is then transferred resonantly to CO$_2$(001,0) and converted to the infrared emission of 4.3 micrometer band. Because of the resonant nature of the band emission, the radiation energy is trapped in the mesosphere.

A new mathematical technique was developed to solve the radiative transfer equation of the CO$_2$ band in optically thick atmosphere. The calculated results were compared with the observations in an IBC III aurora.

BAND RADIANCE (LOOKING UPWARD) OF CO$_2$ 4.3 MICROMETER RADIATION.

OBSERVED IN IBC III AURORA
Poker Flat, Alaska, March 22, 1973

CALCULATED
N$_2^*$ + CO$_2$ = N$_2$ + CO$_2^*$

77MR

OBSERVED (NO AURORA)
THERMAL EXCITATIONS

DOWNWARD RADIANCE (MR)
XeO による OI および Xe の発光

実験室内で得られた OI (S) に対応する XeO の発光は、H₂、N₂、その他に存在する分子の影響を受けることから、特に XeO の場合に最も著しい。XeO, O₂ 反応で XeO は、反応生成物の構造を示すことを明らかにすることを目的としており、これら XeO による OI および Xe の発光を観察した。XeO は、绿光（green glow）の発光を観察した。

今 Xe と CO₂ 発光を XeO を、一方で、発光を実験するにあたり、これまですの実験結果は下記のようになるので、XeO による OI および Xe の発光を観察した。

実験結果

1. OI および Xe の発光を観察しない。
2. 緑色（green glow）の発光を観察しない。
3. (e) + CO₂ 発光では OI および Xe の発光を観察しない。
4. Xe のスペクトルは、XeO (S) および XeO (P) のスペクトルに一致している。
5. 放射性は、放射能を低くすることと、green glow の発光を観察しない。
6. XeO および Xe の発光を観察しない。

発光に伴う化学反応は以下の通りである。

\[e + \text{CO}_2 \rightarrow e + \text{CO} + \text{C} \text{ (P)} \]
\[\text{Xe} + \text{O} \text{ (P)} \rightarrow \text{Xe} \text{O} \text{ (P)} \]
\[e + \text{XeO} \text{ (P)} \rightarrow e + \text{XeO} \text{ (S)} \rightarrow \text{Xe} + \text{O} \text{ (P)} \]
紫外線強度の地面上測定

ここに述べた。人間の活動が環境に与える影響の一つとして、SO₂の成層圏オゾン層に対する問題が語られる。いくつかの理論的研究は、SO₂は成層圏のオゾン層を破壊し、光を吸収するという事を示している。

成層圏のオゾン化学における重要な変動を示す指標（示標）物質としては、CO₂、SO₂、H₂S、NH₃、H₂O等が考えられ、これらの影響を直接測定する場合には測定精度に大きくとくに影響されなければならない。特に成層圏H₂Oについては、1 ppm の検出感度が必要である。レーザーレーダーの測定による、成層圏下部のエーロゾルの分布といずれかの分野との間に相関がある事が発表されている。これにより、エーロゾルの粒径分布や数密度、化学位など、光学的特性の測定が重要であると考えられる。

しかししながら、光学的な方法による、小量物質の探査は、可視光線の領域ではほとんど不可能である。それは、下層大气のレーダー探査や、従来法が非常によく使用されないからである。エーロゾルは気球による直接観測や、成層圏下部より行う分光吸光分析の観測などで、数統計学によるレーザーレーダーの観測はエーロゾルの形状に有効な手段と思われる。しかし、人工衛星による紫外外探査（2 μm ～ 8 μm）の測定は、污染成分の成分の粒度に影響である。

一方でオゾンはHugginsの紫外吸収を持っているので、入射2000Aの紫外線の強度により地上に達しないが、そのA波長2200Aの間では成層圏のオゾン量を測定できない。紫外線の地球環境に大きく影響する。

人間による紫外線の影響についても図1に示すように様々な例がある。地球の大気やエーロゾルの多変数変動、放射線が太陽の直接紫外線の影響で、放射線により大気を直接的に破壊し、放射線測定をし、下向きの放射線を測定する方法について考えることができる。様々なオゾンモデル及びエーロゾルモデルについての計算方法である。その下からの放射線産出はエーロゾルの光学的性質に関連するが、一方に太陽よりの直接放射より破壊される事は明らかである。これにより、エーロゾルの吸収係数を測定する事は困難である。

以上の事象から、観測時の波長2500A ～ 2000Aについて、適当な帯域において、下向きの放射線強度をモニターする事が重大であると考えられる。
この観測目的の主要目的は、OH分子夜間大気光の発光形状を光電観測することである。最近、PetersonとKiefferによるOH大気光の地上からの測定及び高気圏観測が行われ、雲状の形をした発光の観測が成功していることが報告されている。

我々は、これに応じて観察を実施した。そのような観測の可能性があることを確認すると同時に、観測と機能した写真に理解しにくい点があることを見出し、一般的にOH大気光のように厚みのある発光層が天頂に至って一様に広がっているものを下方から観測する場合、視野方向の天頂角が増大するにつれ、みかけの強度が増大する（van Rhijnの効果）は現であるが、後者の観測には、それが著しく観測されないものである。そしてこのvan Rhijnの効果よりもOH光の空間分布の不均一性の方がはるかに強い為であるとするとならば、それが空間的波長比は極めて大きい（2~3以上）ことになり、これは今後の多くの観測例からも否定されていないことである。

そこで、雲による影響や、下層大気による散乱等の影響が地上よりより少ないと望む見高で、望遠望遠（立教大学牧野先生他）と光電観測を同時に行なうことを計画し、希望を展望を担当した。

観測箇所は、[図1]の通りである。視野方向1.0°で、雲が両方の平面鏡の面象により天空上に大略と図2のよう近接する。直視は、鏡の面鏡機構上に図2の通りや鏡は窓であるが、この窓により天空上は10°。方位角方向2°の幅の天空上からOH大気光の観測が行われる。観測は15分毎に25分毎に上端又は下端に至った時に、内管又は窓薬を移動させ、望遠鏡上から5段階の操作フィルタをつながる。観測対象は、波長の短いものからOH線（5577Å）、背景光としての星間光（6700Å）、OH（7-2）带（6900Å）、（6-2）帯（8350Å）、O2（7-2）帯（8650Å）である。フォトマルの出力はチップを周波数に合ったフィルタ交換速度の速く、観測士のレセプターにより地上に送られた。

観測所は5月23日20時47分に大気球観測所（東大）から放球される。22時43分に高度25kmのレベルフライが後入、24日昼まで観測を続ける。気球の姿勢は下方視正により10°視野度の視野に取まっていている様子である。

なお述べてきた観測日の観測データをとると強度変化が測られるが、それについては現像及びvan Rhijnの補正を含め現在解析中であり、結果は当日報告する事。
色素レーザーを用い、ライダーバームによる超高層ナトリウム層の観測が1972年に実施され、初めて成功した。その後、数多くの観測が行われて、ナトリウム層の存在を確認し、その後も安定して観測が行われている。なお、観測は夜間に行われており、ナトリウム層の変動を長時間観測することが可能となった。

安定したナトリウム層の観測結果は以下の通りである。観測の目的は、ナトリウム層の変動の特性を解明することである。観測結果は以下のようにまとめられる。

1. ナトリウム層の密度が時間的に変動する。
2. これらの変動は、気象条件や天候の影響を受ける。

この結果は、ナトリウム層の変動が気象現象と密接に関連していることを示唆するものである。
超高層大気温度の分光観測（II）

高野幸一，木村弘，市川収朗

* 東北大学理学部 ** 島根大学工学部

観測所においてファブリ・ペロート干渉計システム（写真1）を用いて5078波長
系線をプロフィールドップラーミータ。層の中心が大気温度を求める観測を行
が、装置のフィネスをより向上させずに層を厚くして温度測定、精度を増すために
annular aperture を開発した。これは後にビンホール・スリットに Sega で、オ
2 図のように中央の干渉次元をはさんで干渉ブリッジを同じ円状のスリットを通して集
光することにより光量の増大をはかるものであり、超微至るさせる観測板を用いて製作され
1208 メッシュを光源として用い、室内実験において光量の増大は、20 倍に及ぶり、ブリッジを用い
場合、対応なしにフィネスを増大させたビンホール・スリットを用いに場合においてますべくもあ
う。3 理論的に予想される線状の結合フィネスがさらにに対して。実測されるフィネスは、20 倍に及ぶ
ブリッジを用いの場合に、20 倍に及ぶブリッジを用いの場合には 7 倍以上に

写真1

BLOCK DIAGRAM OF THE FABRY-PEROT INTERFEROMETER SYSTEM.

写真2

写真では annular aperture を用い、1217波長系線の観測結果について報告できます。
II-17 酸素赤線／溶媒密度比変化

栗田 光正
（弘前大学）

超音大気中の中性粒子およびイオンの移動をしらべるためのトレーサーとして、
310Å と 6300Å OF lines の強度変化を比較する。これに Glow が関与する粒子の密度は、大气運動の他、拡散やドリフト等によって control されて
いるが、これらの factor が E から F 区域の領域で、どの様な特性を示しておりかという事は、観測面から調べるべきが目的である。日変化の解析から入ることは、仲々
難しいであろう、今回で、長期変動を取扱うかかった、中緯度における、太陽活動
変化に伴い、二つの line の強度変化の関係、明確な位相の差があり、又、これに
重叠している、短周期の変動にも、位相の差があることがわかった。
下部熱帯のO, G, 北半球及び大規模循環（II）

岩渕泰信
名大・水深科所

下部熱帯のO, G, 北半球にとって数値計算の結果を報告する。数値モデルを2次元線形モデルで次に頂点を考慮の対象とした。

放射律儀：分子放射律儀, 濃縮放射律儀
循環による変化：大循環律儀による変化

風速と温度の2次元的モデルは実測値とを元にして作られたモデルと仮定する。風の
上層運動を尾の水深運動に通るヨーダーと連続の式によって連絡する。水深の濃縮
係数は、縦方向の濃縮係数の10倍程度と仮定する。

前回の報告（下巻、春）では冬半球側のCの增加、冬半球・夏半球とで高緯度側
は循環律儀が大きく、化学変容、化学-放射律儀がそれぞれ増加しているが、赤道近辺で化学作用の
領域は、光化学-放射律儀モデルに近い値であることを示した。今回はその後の計算結
果を示し、若干のエネルギーテラギーに関する議論を行う。考察の対象とするエネルギー項
目は、

P1 S・R, 紫外線外光吸収量
C1 O₂ 1360°C, 麗陽エネルギー
D1 環流変形過程に伴う喫食・冷却
D2 擴散流に伴う熱輸送
D3 運動エネルギーの
eddy dissipation と拡散

詳しい計算結果は今後行うが大まかな傾向を下記の表の通りである。

<table>
<thead>
<tr>
<th></th>
<th>北半球</th>
<th>南半球</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>小</td>
<td>大</td>
</tr>
<tr>
<td>C1</td>
<td>麗陽エネルギーの放出は北半球・赤道・南半球の順に大きく</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>剰著的に南半球が大</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>上下方向の輸送は赤道で一番大</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>全体的にみられる</td>
<td></td>
</tr>
</tbody>
</table>

詳細は計算結果を含めて行うが大まかな傾向を下記の表の通りである。
超高層大気組成のモデリングII

小川利勝(東大理)

1次元のphotochemical-diffusive equationをimplicit methodで数値解くことにあたって、O(1D), O(3P), O2(S2), O2(A2), O3, H, CH, NO, NO2, H2O, H2, N2, N2O, N2D, NO, NO2, N2, CH4, CH2O, CO, CO2, O+, O2+, O3+, N+, NO+, X+, O−, O2−, Y−, electronの密度の日変化を高度20-150kmにおいて計算した。別に定常解を計算し、これを日変化の計算において初期値として用いる。未確定のparameterに対するsensitivity calculationを行った。

(1)密度推定係数は、高度20kmまでのO/NO密度比が2になるものを標準モデルとし、Schumann-Rungeの二重エネルギーWidingらの値を使っている。使用の密度推定係数よりやや大きくなる。90-100kmで1.2×10^6 cm^-3である。turbopauseは100km附近にあることとなり、観測の効果を考慮した。，(2)NO-xの密度は高層部については、95-95kmで0.4×10^6 cm^-3である。これは、高度推定係数を用いて、90km近辺にturbopauseをもって考えている。Perkins-Reevesのsolar fluxは小さいので考慮が足らない。

(2)小さい密度推定係数を使うと、80kmより下に対して実現されるO3のdipが発現しない。これを発現するのは日出直後のみである。O3 dipの測定例はいくつかがあるが、dust layerが測定に影響を与えていることも考えられるので、O3の値のdipの分布は確認したものを考えるべきではない。

(3)OH+HDO→H2O+Oはodd hydrogenの減衰を防止する重要な反応であるが、この反応係数に10^5-10^6 cm^-3 sec^-1で未確定である。この反応係数を大きいものとするが、唯一の測定例のOHは測定誤差が大きく、測定値であるだけに10^5 cm^-3 sec^-1の数値が大きい。一方O2のO3の測定値を考慮した場合に少しだけ大きいこと。

(4)NOは熱成ではN(4D)+O原子反応で生成されるので、N+e, N2+O, N2+H, N2+O2の反応におけるN(4D)の生成効率がNO密度を大きく支配する。NOの密度は熱成核がよく決まっていないので、ここではN2の熱核による推定が有効である。NO密度は前報で密度20-80kmで10^7 cm^-3とされている。この密度をNOの観測値と比較すると80km以下のNOの測定値の推定は大きく大きい。新しいNOの分布にすると、O2のO3の限界を示すことができ、NOの分布の重要性についての新しいコロナとの関係を考えると、NOの分布は予測される正確な推定が重要となること等を論ずる。

(5)O、NO、NO2は80km以上では変成が日変化を受ける。日没とともにO→O3、H→OH+H2、NO→NO2が起こる。日出のときも変成の起こる。

(6)75km付近のOのdipが見られるが、これは変成解で解明されない。90-80kmではOの変成数が大きくなるので太陽光幅の変化に対し密度変化がfollowできないようである。このdipは日出後1時間で、O3のdipや電子密度分布に影響を及ぼさない。
Preliminary Results

- The vertical distribution of NO increases by a factor of 10 at mesopause, which is consistent with earlier observations.

- The mean mesopause temperature is approximately 110 K, which is close to the estimated value of 100 K.

- The NO concentration shows a clear seasonal variation, with higher values in summer than in winter.

- The distribution of NO is affected by the hydration processes, which increase the NO concentration.

- The mesopause temperature, NO concentration, and hydration processes are interrelated, indicating a complex dynamical system.
山本和文 北村教一
九州大学 理学部

ここに述べる磁場センサーは、比較的大きな外部影響のある環境においても、良好なS/N比で、被測定磁場を検出できるセンサーで、quadratureと呼ばれるものの一つである。これは、ロケット等に磁力計を搭載して観測を行う目的で考案したもので、遅くにある磁場非音源による磁場を消去し、遅くからの磁場の基率をよく検出を可能とする。

図1に示すように、一定距離で設けられたスリットから、互いに逆相となるよう配置されている。任意の距離に磁場を感じない点をもうかる位置することができる。今、磁場を生じるコイルの数をn、各コイルの変動面積をS_1, S_2とするとき、これらのセンサーを連続磁場は、変量差を引き、$4S = (S_1^2 - S_2^2) = (S_1^2 - 0.1\% S_2^2)$ なる。S_1, S_2を適当に設計すると$(1 \pm 0.1\%)^2$ なるS_1/S_2なるが、$4S = 0$ となる。つまり、このrに極座標をもつことができると。

特に、$S_1 = S_2$のとき、これはquadratureと呼ばれる。極限値に近づく点をもつ。

図2に、通常コイルの実験で得られた特性の一例を示す。

この報告では、上記の事項を実際に使用した実験の結果を報告する。
SQUIDによる実測

石津美津雄 北村春一
九州大学 理学部

SQUIDは、原理的には、センサーである超電導リング素子のなかの磁束を、磁束量子Φ₀ = 2.07×10⁻⁶ G·cm²の単位で測定することができる。

この磁束計の感度をさらに高めるには、いくつかの方法があります。SQUID素子で発生する磁束変化信号を、電気的に処理して、素子の近くにおいたコイルに電流として流すことにより、增幅される方法がある。この方法の増幅量は測定可能な磁束の強さに比例しているので、これにより素子の感度が大幅に増大する。この方法的有效性は、素子の形状、寸法、磁束の強さに比例した増幅が得られるためとされている。

感度を高めるためには、超電導素子の感度を高める方法がある。これには、flux transformerを用いて外部磁場を素子のなかへ導入する方法など、超電導素子の表面積を増大させて、磁束感度を高める方法がある。

我々の研究室では、SQUIDを地球磁場変動の観測に用いるため、研究を進めている。具体的には、地球の磁場変動の解析を目的として、SQUIDを地磁気観測に利用するため、uniform磁場を用いる。Magrisonらが観測した場合には、SQUIDの磁場変動計の感度が、素子のインダクタンスの逆数に逆比例するため、インダクタンスを増加させることにより、感度を向上させることが可能である。この理由は、素子の表面積を増大させることにより、磁場感度が向上することにある。

SQUIDの磁束変化信号の振幅が素子のインダクタンスの逆数に逆比例するため、インダクタンスを増加させることで、素子の感度を向上させることが可能である。この理由は、素子のインダクタンスの逆数に逆比例するため、磁場感度が向上することにある。

J.Low Temp Phys 1972 Vol.16 No.5/6 S33

地磁気変動等と電流系の変動
電離層などとの関連性
白木正規
気象庁・地磁気観測所

これまでの解析から、地磁気日変化電流系の中心緯度と電流系の強さ(D)は日変動や10〜30日周期の変動が含まれていることが明らかになった。これらの変動の原因はまだ明らかでない。今回は、これらの変動が電離層の状態と関連があるかどうかを探ってみた。相関係数表に示すように、電離層のF_{2}, E_{2}, F_{1}, E_{1}, F_{3}, E_{3}, F_{0}, E_{0}, Ap, IMFの極性, IMFのフラックスとの相関について調べた。これらの値はUTで得られたものである。

相関係数を示した期間は、1970年12月〜1972年2月の15か月間である。上にあげた量から季節変化を除いて、そのときの季節価に相関係数を求めた。その結果はTable 1に示されている。CdとY(D)との相関係数の間の相関係数は小さく、単純な関連がないが、相関の程度(5%)から検出する相関があるかどうかは、サンプルが少ないため、正確な結果が得られないことが明らかである。これに対して、IMF極性や IMFのフラックスなどは相関がみられるべきほど絵が深い。

<table>
<thead>
<tr>
<th></th>
<th>F_{2}</th>
<th>E_{2}</th>
<th>Y_{2}</th>
<th>F_{1}</th>
<th>E_{1}</th>
<th>F_{0}</th>
<th>E_{0}</th>
<th>Ap</th>
<th>IMF</th>
<th>IMFフラックス</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r(D)$</td>
<td>-23</td>
<td>-20</td>
<td>-32</td>
<td>-30</td>
<td>13</td>
<td>17</td>
<td>-0</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>$r(D)$</td>
<td>5</td>
<td>-16</td>
<td>-6</td>
<td>-0</td>
<td>-16</td>
<td>3</td>
<td>-6</td>
<td>-8</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>$r(D)$</td>
<td>12</td>
<td>2</td>
<td>-12</td>
<td>-0</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td>$r(D)$</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>13</td>
<td>-1</td>
<td>13</td>
<td>9</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>$r(D)$</td>
<td>-5</td>
<td>20</td>
<td>10</td>
<td>-4</td>
<td>12</td>
<td>14</td>
<td>-18</td>
<td>9</td>
<td>14</td>
<td>-18</td>
</tr>
<tr>
<td>$r(D)$</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>13</td>
<td>-1</td>
<td>13</td>
<td>9</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>$r(D)$</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>13</td>
<td>-1</td>
<td>13</td>
<td>9</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>$r(D)$</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>13</td>
<td>-1</td>
<td>13</td>
<td>9</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>$r(D)$</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>13</td>
<td>-1</td>
<td>13</td>
<td>9</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>$r(D)$</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>13</td>
<td>-1</td>
<td>13</td>
<td>9</td>
<td>13</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 1. Correlation coefficients (x100)
電離層ダイナミモ電流のUT変化（II）

鈴木恵，前田栄
（京大理）

電離帯は電離層のいわゆる等価電流系でUT2時間毎に求めることを目的のものと決めた。無理に計算した1964年4月3日の解析結果については報告した。要旨を改めて述べれば、3時間の等価電流系を採用することが現時点での最善のうえであろうから、1964年4月3日の結果では、この日が地球極層の平和をもって多かったため解析はうまく行かなかった。そのうえで、結果は観測所の不足による空間的にデータの不足であるようである。

今回は、その破矢なので解析した1964年7月17日25日までの結果について報告する。この両日はfive quiet days に入り静穏日である。7月17日の03 UTについて求めた電流系が図に示されるようになる。この結果は電流の強さ及び合体の形において、前同の結果より数段Srの電流系に似ている。しかし、通常見られる日中影響と、夜半週に丸一つの形状の電流はあるのである。電流図はまだ大きな振動を示し、変化の傾向は重なり空間的にデータの不足であると考えられる。この点解決のため、数学的対応を考え中であるが、結果はあまり大きくない。

等価電流系は、地球値を成分のうちH及びE、IはDLの二成分の組合せよりおきまり、そのうえに地球的はともに一致した結果が得られる。数学的表示では各成分のデータの展開形（圧迫）とポテンシャルの展開形（圧迫）とは次式のようなになる。

\[
X_n^m = \left[(\epsilon_n^m + i\eta_n^m) \cos mt + (\epsilon_n^m - i\eta_n^m) \sin mt \right] X_n \quad \ldots \ldots (1)
\]

\[
Y_n^m = \left[(\epsilon_n^m + i\eta_n^m) \sin mt - (\epsilon_n^m - i\eta_n^m) \cos mt \right] Y_n \quad \ldots \ldots (2)
\]

\[
P_n^m = \left[(\Delta_n^m - i\varphi_n^m) \cos mt + (\Delta_n^m - i\varphi_n^m) \sin mt \right] P_n \quad \ldots \ldots (3)
\]

\[
X_n = \frac{1}{m} \frac{dP_n^m}{d\theta} \quad , \quad Y_n = \frac{m}{\pi} \frac{P_n^m}{\sin \theta} \quad \ldots \ldots (4)
\]

今までの解析では、上記（1）及び（2）つまりHとEの組合せで行った。しかし、その結果等価電流系に対するD成分のデータによる制御がなかったため、結果的にD成分がいくら大きいにかってもそうだろう、つまり消去反応の電流成分の強い電流系を求めていようは難だがある。そこで今回、（2）（3）を、つまりDとEをつかった解析をおこない今後観測中である。
Scのequatorial enhancementについて

基本概念と実験

1. テーザーの効果について（Ogawa et al., 1957）。
2. ビームソンの効果について（Kamishita et al., 1964）。
3. ビームソンとリオノティの相互作用（Alves, 1968, 1969）。

この研究では、Scのequatorial enhancementについての新たな理解を提供することを目的に実験を進めてきた。実験の結果は、Scの増幅効果が観測され、特に地理的な影響が顕著であることが示唆された。

実験結果と考察

1. Scのenhancement rateは、30°N付近で最大値を示す。
2. 实験の結果、最大値は1.4へと増加し、decayして一定値に達するというパターンが見られた。
3. Scのenhancement rateは、緯度の影響を受けるものであるが、特に30°Nを越えると増加する傾向が見られる。

この結果から、Scのequatorial enhancementは、地理的な要因が重要な役割を果たしていることが示唆される。

今後は、これらの要因の詳細をさらに解明することが重要である。
II 27 電離大気の運動に及ぼす境界条件の影響

堀内俊洋、石黒真
京都大学工学部

下層中性大気中で勃起された大気潮汐が、上層へ伝播していくと電離大気にどの様で影響を及ぼすか、又大気潮汐自身の発生・変化を考慮する必要があるがこの問題に関して、古くは、Chapmanらはポリゴナルダイナミック理論以来、多くの人々による報告がされてきた。

しかし、これら多くの報告は、重要な次元を欠き、再検討を必要とならば思考される。それは、大気に、運動と電界の相互に及ぼしうる影響、特に、大気の電伝導率の傾斜方向に関連する変化の影響が考慮されていない点である。

今回、これらの問題に及ぼす境界条件の重要性を指摘し、今までの取り扱いとの比較を行う。上層の境界条件として、層間の風速と、電離層との境界付近における電場の影響を考慮する。下層の境界条件は、水平方向の電気変動を一定とすものとする。
II-28 非定常HM波の電離層通過

菊池 薫 荒木 微

磁気波（interplanetary shock）により、地球を横切る。面積が増加させたhydromagnetic shock waveが発生し、途中減衰を受けながら、**hydromagnetic wave**として、地表面に伝わるが、SCであると考えられる。**hydro-magnetic wave**の伝播特性は、多くの人々によって不明なことが多いが、いずれも定常破膜に対するもので、SCのような非定常現象を考慮する場合、通常でなく、非定常問題として解く必要がある。ニオーブ体変形に大きく影響を与える電離気を着目し、SCマイクの磁場変化による通過特性を明らかにしよう。

解ベクター等級は(1)Maxwell方程式と(2)plasmaの運動方程式と(3)generalized Ohm law。

(1) \[\mathbf{v} \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \]
\[\mathbf{v} \times \mathbf{B} = \mathbf{v} \times \mathbf{B} \]

(2) \[\rho \frac{\partial \mathbf{v}}{\partial t} = \mathbf{v} \times \mathbf{B} - \rho \mathbf{v} \times \mathbf{v} + \frac{\mathbf{B}^2}{\mu_0} \]

(3) \[\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \mathbf{E} + \frac{\nabla \mathbf{B}}{\mu_0} \]
\[\frac{\partial \mathbf{E}}{\partial t} = \nabla \mathbf{E} + \frac{\nabla \mathbf{v}}{\mu_0} \]

(after Watanabe 1961)

解析のため、電離気は水平方向に一致し、場構のtime scaleより(1)式中の\[\mathbf{v} \]と(2)式中の\[\mathbf{B} \]を無視した。i形式は、拡散と空間一次元の偏微分方程式と共に、これらの方程式形式に対し、初期値、境界値を次のように与えた。

初値：\[t = 0 \]では、考えてる領域（upper boundaryとlower boundaryを含む領域）には、変化磁場で、それに伴なうプラズマ運動も入らない。

境界値：upper boundaryでSCマイクの磁場変化（light timeをTとする）を時刻の函数として与える。
lower boundaryでは、完全体を仮定した地表があるため、磁場の空間分布のみである。

次に例示では、地球磁気の水平（赤道の場合）で、upper boundaryが80km、lower boundaryが20km（二点間の磁場をみて、いき）の場合、T＝4sec、10secについて解した。

破線はupper boundaryで考えたSCマイクの磁場変化であり、実線はそれに対応してlower boundaryで得られた磁場変化である。赤道電離気の場合には、非定常変化磁場を増大させる効果が考えられることから。
太田壮一郎
岐阜薬科大学

気象研究会において各地で発表した気象現象（即ち、気象観測、気象学、気象学、気象学、気象学）を
目的の観測方法をとりまとまるものである。当理由により、“とりまとまる方法”を改良の
一部を張り出す。

2.4.2.1 1958年（昭和33年）12月1日～1960年（昭和35年）7月31日までのデータを
対象にした、気象観測の統計についての研究を行った。1/1の気圧
スケールを用い、各日の気圧変動を示し、その傾向をみた。統計の
手法に従って解析した結果を以下に示す。

1. conventional と統計解析の手法を用いた、気象観測の
統計解析を行った。この方法により、気象要素の変動が
識別され、気象現象の理解が深まりました。

2. 同様な手法を用いて、気象観測の統計解析を行った。

以上の結果、各地の気象観測のデータをもとに、気象現象の
理解が深まりました。
太陽X線フレアによるD領域の増加電子密度の
検相(3)

大畠光夫
電波研所主任研究員

地球中性大気電離層を生成する電離層密度が太陽X線フレアによる増加電子密度を含むD領域の増加を考慮する場合、電離層密度の増加は次のように計算される

$$N(x, z, t) = N_0(x, z) e^{-2 \alpha x \Delta t}$$

ここで、$$N_0(x, z)$$ は電離層密度の初期値、$$x$$ は経度、$$z$$ は高度、$$\alpha$$ は減衰係数、$$\Delta t$$ はフレアの発生時間である。

さらに、フレアの発生時間によって電離層密度が増加する現象は次のように計算される

$$N(x, z, t) = N_0(x, z) e^{-2 \alpha x \Delta t}$$

ここで、$$N_0(x, z)$$ は電離層密度の初期値、$$x$$ は経度、$$z$$ は高度、$$\alpha$$ は減衰係数、$$\Delta t$$ はフレアの発生時間である。

フレアの発生時間によって電離層密度が増加する現象は次のように計算される

$$N(x, z, t) = N_0(x, z) e^{-2 \alpha x \Delta t}$$

ここで、$$N_0(x, z)$$ は電離層密度の初期値、$$x$$ は経度、$$z$$ は高度、$$\alpha$$ は減衰係数、$$\Delta t$$ はフレアの発生時間である。
Ionoospheric Effects of Energetic Electrons Scattering from the Radiation Belts

(1) Scattering Processes in the Magnetosphere

武井忠雄 イム ニ
東北大学理学部

放射線帯内帯と外帯との間のいわゆるelectro region（Lw 1.8 ム～3.5）には、磁気嵐の際、数十数百 keVの電子が大量に注入され、also electronが見られますが、磁気嵐が終って1週間後に退下としても電子が消滅し、後にはほとんど見ることが知られている。

Lynnら（1972）によれば、この現象は whistler-mode wave turbulenceによる pitch-angle diffusionによって説明されると示している。この機構は、electro regionの電子の消失が消滅し、内帯電子の安定性を、二つの問題点を認めることができる。さらに最近、Inhof等（1975）によって precipitating/quasi-trapped componentの観察、Wood ら（Smith et al., 1974）の磁気嵐際の plasmapheric ionsの観察によって、wave turbulenceによる pitch-angle diffusion processが、プラズマシフェルで実際に起こっていることを示すことも確認されている。従って、中層系電子層への precipitating electronの効果を定量的に求めるうえで基本の立場は確実化基盤を持つことになり、前回の研究で示したように、中層系の電子層において電離層に降下する電子成分を求めるには、whistler-mode wave turbulenceによる pitch-angle diffusion processがあると気象上Coulomb scattering2の磁気嵐の巨視的なゆらぎによる cross-L diffusionを考慮しない必要がある。しかし、Morrisonら1973年（dipole）annular invariantを用いる stochatic processとして扱い、L (dipole) latitude, pitch-angle, equatorial pitch-angle distributionのFokker-Planck equationで表現し、electron scattering flux、trapped component flux、precipitating component fluxによる計算法を用いることにより、precipitating componentについても確率的に求められる。計算によっては、解釈結果も、他のdiffusion processの解析について述べる。

References:
Lynn, J. R., et al. (1972), ibid., 77, 3455
Smith, E., et al. (1974), ibid., 79, 2507
Vent, M. L., et al. (1973), ibid., 78, 1064
H-32 Ionospheric Effects of Energetic Electrons Scattering from
the Radiation Belts
II) Ionization in the Inner Ionosphere

参考文献
Rees, N.M., and K.Haeda (1973), ibid., 28, 8991

日層のイオン分布

反田久義 上山 弘
東北大学 理学部

昼間日の層のion分布を、光学化学平衡の仮定を用いて、計算してみた。reaction schemeを下に示す。

negative ionのreaction schemeについてはみると、H, O, O₂, H₂Oはassociative、collisional detachmentにより、常に反応の進行を妨げる働きをしている。

2. CO₂、water cluster ionは、三体反応で作られる。
3. CO₂、CO₃は、O₃またはO₂とCO₂との二体反応によって作られる。

そこで、特徴と言える。

80km以上の領域では、Oのconcentrationが高いため、negative ion生成の反応よりも、生成を妨げる反応の方が速い。従って、negative ionは少なく、また、どの点でもO₃、O₂である。

70km以下の領域は、Oのconcentrationが低いため、detachmentはあまり起こらない。これに対して、逆にnegative ionを作る三体反応は速いため、合体の反応により存在を示す条件を備えている。特に、比較的大きなCO₂との反応を含んでいるため、反応はほとんど妨げられないことなく進行し、CO₃、CO₂、NO₂、NO₃、及びそれぞれのhydratedな生成物となる。

Positive ionに関しては反応を建立させ、重気の中性粒子条件に従い、計算結果を報告する。
K-9M-29号機による磁界強度観測値から
下部電離層の電子密度分布の計算

長野勇 木村秀雄 梅保正喜 萩尾敏郎

1. まず、電離層中の中伝導モード強度からの電子密度を計算する方法は次の会で
報告した。この方法により、K-9M-29号機によって、観測点G40KNの磁界強度観測値
と伝導モードから下部電離層の電子密度の高度分布を得たと報告する。

2. 電極値 機器の一部でループアンテナを使用して、磁界強度を測定した。下降
時における電極値をFig.1に示す。また、記録された記号の一部を
ドップラーパートに示す。Fig.1 において、60~64 Kmでの電極値は、信号を検出した場合でも、それが
ある高度で、ドップラーパート強度より低くである。

3. 電子密度の計算 あらかじめ、平均電離度モデルの高度分布（Fig.4）と、 Liquam等の
モデル（11M
10

3.5°, 10.5°, 10°, 4.5°, 16°, 16°, 16°）を用いて、Reynoldsの式（2）を
X=0に限って記述すると、電子密度に換算すると、0.3である。電極値（Fig.1）より、磁界の磁場
値から、この点の磁場は約0.5 Kmとなる。従って、初期値における電子密度分布はその
高度で適当に経験値に近づくと考える。その電極値と電子密度をモデルと同定と、fullwave
法にて記録した記録を計算し、その結果と観測値に高さ分布に相当する。この結果を
他の電子密度分布とFig.4に示す。従って、得られた電子密度分布は高度分布に
一致すること、仮定した電子密度の修正が適当である。このような方法（Fig.3）と得ら
れた電子密度分布はFig.4に示す。従って、得られた電子密度分布との一致が、Lモード
の分布をFig.2に示す。計算結果と電極値について、0.8 Kmで良い結果は実験値とFig.2と一致する。

4. 以下が実験でのK-9M-29号機によるVLF磁界強度観測値から、計算値による電子密度分布と比較した。Fig.2 が
得られたVLF波の反射信号から得られた高度とday（11:00）の分布はほぼ中間分布に相当する。
近距離伝播 VLF 標準電波の電界強度の周期解析

菊池栄 芸大微

電気的局所の情報を取りまとめた際に、VLF 標準電波（NICT.17.4KHz~局域までの伝搬距離は 100km）の測定をつづけてみたが、今回は、電界強度の変動のパターンを知るため、測定解析を試みた。

電気的局所は、比較的変動がないといわれ、標準電波としての利用が想定されているが、電気的局所の側が見えても、その変動はかなり顕著なものであり、日出日没時、夜間の強同期変動などは特に大きいという。

電気的局所の変動が動いて、周期よく検出すると、変動解析が重要になってくる。電気的局所の関係で電気強度の測定ができなかった。しかし、ループアンテナを、地上波の影響力を考慮すると、これにより、電界強度の変動の詳細な情報が得られる。

今回の解析では、夜と昼のパターンを出するために、各 \text{24h} \text{UT} \text{モニター}と \text{1日4時間}の電界強度の記録を、データレコーダーに入れて、更に AD converter を通じてデジタル化し、解析を周期解析を行った。

このようにして得る小数結果の一例を示したもの次の図である。上図は \text{Aug}.25,1994, \text{22} \text{~Aug}.25,7 \text{~Aug}.25の4時間の記録をつづけて周期解析したものです。下図は \text{Aug}.25,1994, \text{10} \text{~Aug}.25の記録を同様に処理して得られたもの。夜間の空間波電界強度は昼間のそれに比べて弱いことになる。また、夜間の変動周期は昼間に比べて短いか、 \text{30} \text{秒} \text{~昼間} \text{~短か} \text{~30} \text{秒} \text{~短か} \text{~短か} \text{~短か}

更に統計的な処理を経た平均の変動パターンについての結果を述べる。
II-37 レーダによる降雪量測定の実際と疑問点

実験方法

降雪は、地表から大気に導入して気象観測の方法として常法としている。レーダによる降雪量測定は、波長を用いて観測する方法である。レーダの観測は、降雪の状態を表示するために使用される。降雪の状態を表現する方法として、レーダの観測結果を示す。レーダの観測結果を示す方法として、降雪の状態を表現するために使用される。レーダの観測結果を示す方法として、降雪の状態を表現するために使用される。
セクション 14

1972年10月8-9日夜、ジャコビニ・フィンダー望遠鏡に伴う、流星雨が観測されることは確かである。その影響をもたらす流星雨の分野について、詳細は次の通りである。流星雨の影響をもたらす流星の多くは、流星雨の分野が特定されていないが、流星の分野が特定されている流星を観測することが多い。流星の分野が特定されている流星を観測するためには、流星の分野が特定されている流星を観測することがある。

表の内容は以下の通りである。

<table>
<thead>
<tr>
<th>フィールドNO.</th>
<th>各種</th>
<th>発表開始時(UT)</th>
<th>発表時間(分)</th>
<th>視方</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>霧海時</td>
<td>18:02</td>
<td>7</td>
<td>NW、SEが同一フライ</td>
</tr>
<tr>
<td>2</td>
<td>霧海時</td>
<td>18:07</td>
<td>20</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>霧海時</td>
<td>19:20</td>
<td>240</td>
<td>"</td>
</tr>
<tr>
<td>4</td>
<td>霧海時</td>
<td>23:26</td>
<td>282</td>
<td>"</td>
</tr>
<tr>
<td>5</td>
<td>霧海時</td>
<td>04:42</td>
<td>16</td>
<td>"</td>
</tr>
</tbody>
</table>

注目

各図、校正、観測記を通じて、1972年10月8-9日夜の流星の観測について詳しく報告する。

1. 流星観測の概要
2. 流星観測の結果
3. 流星観測の分析
1966年4月20日午後7時55分頃まで、K-8/12号機により、戦国で初めて夜間における上層風の直接測定が行われた。ただし、その時の気象状況は必ずしも最良ではなく、種子島観測点ではTMA（trimethyl-aluminium）発光雲の構造の細部まで撮影されたが、他の観測点では単純な発光雲の観測が行われたのみであったので、K-8/12号機についてはデータ的な観察の結果に留まる現状である。

その後、宇田崎のコンピューターFACOM 230/75を用いて、高精度の解析が行われようになったこと、急激に松山ラジオ望遠鏡を用いて、その時撮影された35ミリカメラによる写真が解析され、TMA発光雲の横断構造までよく説明されることが判明したため、今後改めて詳細な計算を行うことができた。その最終結果をここに報告する。

図1はTMA雲の水平分布をシュート面投影である。Hは高度（km）である。この図からも風の変化をはっきりと示していることがわかる。図2は水平面におけるシュート面を示したものです。風速ベクトルが高さ上げられ、風速が吹く方向と風速が吹く方向に回転している。このような変動性は環境風の影響を大きく反映する。図3は風速の絶対値ならびに、風速の南北成分が高度ごとにどのように変化しているかを示したもので、高度1113kmを境にして下では東向き、上では西向きのzonal windが吹き、またmeridional windについては、1033km以下で正向き、それ以上負向き1303kmまで北向きであることが分かった。また高度1303km付近に風速のshearが見られ、ここにERA層があることを示している。これらの結果は1965年Murphy等がBarbados（13.1°N）で行った実験結果とよく合っている。

以上の結果から今後のTMA発光雲観測について次の2点をコメントしておきます。

1. TMA発光雲観測は準安定時実験に異なり、夜間の観測が十分なデータを提供する。風速の変動特性を詳細に観察することと、shear層の構造を詳細に観察することが必要と考えられる。

2. 研究機の施設は高度1000~4000kmで行われたが、その他の地上実験の結果から考えると、payloadを約2倍に大型化すれば、現在大気科学上の課題であることになる高度70~900kmの下部鉱直層を含む複雑な風速構造を観察することもできる。このような実験も実用にききあげて行いたい。

3. 以上の結果をもとに、上層風の変動特性を理解するためには、観測の従隔において、観測の対象をさらに詳細にすることが重要である。これからの観測成果をもとに、観測の成果をより具体的に報告したい。
K-9 M-48 による中性大気温度測定について

平尾明雄・松村正三
(東京大学宇宙科学研究所)

K-9 M-48号機は1974年9月20日8時32分に打ち上げられた。私達は高度100 kmから200 kmでの中性大気温度を測定することを目的として、同機にTime-of-Flight法による温度計を搭載した。この測定器は1975年4月講演会で報告したものと基本的に同じものである。

データについて現在検討中であるが、信号の位置及びその出方に対して幾つかの疑問点が示されている。この測定に関しては、ロケットの飛行姿勢が重要な要素であるので、これに基づいた解析結果を報告する予定である。
Cherenkov emission of acoustic gravity wave in the upper atmosphere

S. Kato and T. Kawakami
Ionosphere Research Laboratory, Kyoto University

Supersonic motion generates gravity wave of very low frequency as well as acoustic wave. There are two very different cases for subsonic motion. If the Mach number, m, is as $m_0 < m < 1$ where m_0 is ratio between the Brunt-Vaisala frequency and the acoustic cut-off frequency, only gravity wave of very low frequency is emitted. However, for $m < m_0$, gravity waves of relatively high frequency and also very low frequency can be emitted although the definite conclusion for this case needs three-dimensional consideration. It is proved that in supersonic motion, in general, the two-dimensional approach is relevant for an initial period after the arrival of wave-front. For subsonic cases the approach may contain certain errors. As an application of the present treatment a supersonic motion of the terminator is considered. The motion can generate gravity wave with pressure perturbation of a few to few tenths of the static part. The treatment is mainly two-dimensional but a preliminary result is also obtained for three-dimensional models.
H-42

温度成層大気中に於ける

内部重力波の励起と伝播

前田佐和子
京大理・地球物理

序 超伝導電離層電流 (AEJ) が大気内部重力波を介して、それに伴う電離層密度変化 (TID) の励起源の一つであることは、いくつかの観測事実より明らかである。その場合の励起機構として、Lamb 急波の作用、Jule 散乱による加熱があり、Chromospher and Huteson (1979)、Tiedtke (1979) 等によってモデル計算がなされている。前者は散乱的に得られるため、等温、非経時、静止大気を仮定している。ここでは温度成層している大気における AEJ の Jule 加熱による内部重力波の励起についてモデル計算を試みた。

31. 基礎方程式は線型化して

$$\frac{\partial V}{\partial t} - V \frac{\partial V}{\partial r} + \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r} \right) = 0$$

$$\frac{\partial V}{\partial t} - \rho \frac{\partial V}{\partial r} + \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r} \right) = 0$$

$$\gamma = \frac{\nu}{\kappa}, \quad H = \frac{\rho}{\kappa}$$

B：単位体積あたりの加熱率

$$\nu, \kappa$$ は等温度をとる。

励起源は、大気、電離層にはかかわりなく、上層には一様、無限に伸びたものと考える。たとえば、$$\nu, \kappa$$ は水平、$$\nu$$ は垂直方向とする。

$$B(t, r, z) = B_0 \exp \left(- \frac{z}{2h} \right)$$

$$B_0 = 10^{-10} \text{erg} / \text{cm}^2$$

$$h = 100 \text{km}$$

$$\alpha = 2.0 \text{cm}$$

散乱した大気モデルは、H と F について 20 km 0 30 km と CIRA 1961、30 km 350 km と$$CIRA 1965$$ である。$$\gamma = 1.4, \gamma = 750 \text{m/s}^2$$ であるとした。

32. とくに F に関しては Fourier 变換し、$$\nu, \rho$$ を消去すると、$$\nu$$ についての 2 次微分方程式を得る。

$$B_i, \frac{\partial^2 B_i}{\partial z^2} + B_i \frac{\partial^2 B_i}{\partial r^2} + B_i \frac{\partial B_i}{\partial r} = 0$$

ただし、$$B, M$$ は F に関する Fourier 成分であろう。

$$B_i = \frac{\nu}{\kappa} (u_i^2 - u_0^2), \quad B_i = -\omega^2 (1 - \frac{u_0^2}{u_i^2 - u_0^2}) (H(u_i^2 - u_0^2)) + \frac{u_0^2}{\kappa (u_i^2 - u_0^2)} + \frac{u_0^2}{\kappa (u_i^2 - u_0^2)} \frac{1}{\kappa (u_i^2 - u_0^2)}$$

$$- \frac{1}{\kappa (u_i^2 - u_0^2)} \frac{1}{\kappa (u_i^2 - u_0^2)} - \frac{u_0^2}{\kappa (u_i^2 - u_0^2)} \frac{1}{\kappa (u_i^2 - u_0^2)}$$

Landjyn and Chapman (1967 Space Science Rev.) による解法を用いて F に関して数値積分をし、さらに F について Fourier の逆変換を介して F を検査する。現在、計算実行中であり、それについて報告したい。
HFドップラーデータより推定した日食時の重力波

一ノ瀬 琢美 小川 羽
(同志社大学工学部) (京都大学工学部)

近年日食による電離層変動の中で、特に下層大気での Acoustic Gravity Wave の発生が上層大気の k 領域に影響することが理論的に明らかにされ、2,3 の観測が報告されている。筆者等は日食時に起つ電離層変動の中で、まだ解明の手がかりのなかった HF ドップラーデータの下層反射波の同期変動について解析を試みた。これは1958年4月19日の日食でそのときの前後は日間の10 MHz ドップラーデータを第1図に示す。このデータよりドップラーミットの最大同波数偏差とシフト量の変化の周期との関係をグラフにしたもののが第2図で Eclipse Day と他の日の周期変動を調べると、Eclipse Day には特徴的な12〜15 min. の同期変動が表れているが、その前後の数日においてもそのような顕著な現象は見られていません。これは Lunar Shadow が Supersonic Speed で地球を通過した場合に Gravity Wave が発生、伝播し k 領域の電子密度に波状的変動をもたらすドップラー現象を引き起こす可能性もある。
イオンプローブ（5）
---イオン温度の測定

中屋木大 道行
（大阪市立大学別）

イオン温度の測定は、その方法をしながらあり、
特にグリッドとイオンプローブとしてしばしば報告されている。この中には、比較的エネルギーの高い数10kHz付近のエネルギーレベルを観測することを対象とする。また、電離度が5×10⁻²以上のイオン温度を測定することに代表されるプローブがある。測定結果において、低温部と高温部が存在する場合があり、ドリフトがインパクト測定結果を報告されている。この中では、イオンプローブと称して実験してきたプローブの
発展のためには、必要とする低温度として、イオン温度測定とイオン温度測定について考察した結果と述べる。

図1のように、イオンエネルギー・分析装置における問題点を考え、
① グリッドに適当な電圧を与えられた時に、等温区間が形成され
ないため、すべての粒子に等しい温度設定ができない。
② グリッドに適当な電圧を与えられた時に、捕集されるイオン
の量が変動する速度と電圧に依存するので、温度測定が
単純にきまらない。

また、自己分極を考慮に入れた試みに試みたが、次の方法で実験した。表1

<table>
<thead>
<tr>
<th>方法1</th>
<th>方法2</th>
</tr>
</thead>
<tbody>
<tr>
<td>規律化</td>
<td>規律化</td>
</tr>
<tr>
<td>摘引</td>
<td>摘引</td>
</tr>
<tr>
<td>摘引</td>
<td>摘引</td>
</tr>
<tr>
<td>摘引</td>
<td>摘引</td>
</tr>
</tbody>
</table>

結果は、1×10⁻⁵℃程度でガラスで実験したと3.
この方法では、以下の理由があった。
① セミロジカルプローブは、電荷変換体外、非い換えをする。
② 電極自体の温度は、電荷変換体外、非い換えをする。
③ イオンの温度は、電荷変換体外、非い換えをする。
④ 方法2では、プローブ挿入のヒステリシスが正しくない。

表1
熱的電子と非熱的電子のエネルギー分布のつながりについて（K-G M-45号機による観測結果）

向井和典 小山務一郎 平尾隆雄
（東大 宇宙航空研究所）

解離圏の電子のエネルギー分布は、その energy balance における重要性のために多くの人々によって研究されてきたが、まだ多くの問題が残されており、

従来、熱的エネルギー範囲の電子は Maxwell 分布をしていてその high-energy tail が高エネルギーを示している。その両者のエネルギー分布がどのようにつながっているかという点については、定性的な研究は極めて少ない。最近 Ashihara ら Takayanagi (1) がこの点を詳細に理論的に詳細に研究した。また実験的とは Hugé ら Nagy (2) の観測があるが、これが従来の唯一のデータである。

筆者らは1974年1月16日に打ち上げられた K-G M-45号機により熱的電子のエネルギー分布および非電子のエネルギー分布を測定した。これらはそれぞれ、異なる方法（プローブの二立方波法と electron spectrometer）で測定された。両者のデータを一緒に書いた一例を下図に示す。両者のデータがつながり具合は必ずしも良いとは言えない。この点に関して instrumental な原因があるか、あるいは実際になら

Ref.

![Graph](image)
光ポンピング磁力計による地磁気観測結果

佐野幸三
気象庁 柿岡 地磁気観測所

1973年9月より1974年3月までの7ヶ月間の柿岡地磁気観測所の "KASMMER" の光ポンピング磁力計による地磁気観測結果について報告する。光ポンピング磁力計による観測は、全磁力 (F)、水平成分 (H)、鉛直成分 (Z) および傾角 (D) 測定のための水平成分成分 (HY) の4成分について4台の光ポンピング磁力計で行なわれている。

各磁力計ともこの期間1°～2°以内の絶対値変動を示しているが、良好な観測結果が得られた。特に光ポンピング磁力計による地磁気観測方法として補償磁場（Blas field）を必要としないH成分については、1°以内の安定度を示しており、この変動を無視すれば、地磁気の変動（局地磁気異常）等と合わせて議論しなければならない。

他方、補償磁場が必要とするH成分観測用の磁力計は、補償磁場の不安定により、変動が大きくなるので、一般に安定度が下り込み、補償磁力計より低下することはやむをえない。この補償磁場の安定度による誤差を最小小さくめるのが今後の問題である。

結論として、光ポンピング磁力計は従来の磁石式変圧器に比べて複雑な電子回路装置とは、故障等の発生頻度が大きいという欠点もあるが、地磁気観測情報に電力信号として精度のよいデータを早く出せるとという利点があり、今後の地磁気観測装置として活用的な役割をもつものと期待される。
II-47

Sg_電流系による地球内部電磁誘導

行試教
東京大学地質研究所

マントル内の平均的電気伝導度分布と、電磁誘導の方法で調べる場合に、Sgの電流値の変化が問題になることがある。しかしながら、これら2種類の異なる電磁変化の解析は、必ずしも同一の結果を導かない。これは、一部は地表付近の電気伝導度分布が水平方向に不均一なためであると考えられている。しかし、地殻と地表の変化の性質の問題としての違いが、電磁誘導に影響を与えないかどうかを検討したかった。

地殻変化では、いくつかの周期の変化が観察されており、この変化は時間的に規則正しいとされる。これは時間的な変化がある。通常の周波数解析による電磁誘導の方法が、変化に対して適用できるのは当然のことであるが、変化に対する変さを調べたかった。

変化を観測した場合、変化磁場は進行性の変化である。進行性磁場は、変化が特定の周期とその高次の調和振動に含まれて表われ、変化を観測する。進行性磁場の電磁誘導と空間に固定された磁場中で地球が回転している場合の電磁誘導の違いを検討することになる。

まず空間に固定した座標系についての誘導方程式を求める。次に固定座標系での座標変換を考慮し、空間的に変換される方程式を導き出すことが求められた。通常解析の解析に従い、変化する方程式を求めることが求められた。

磁場に関する限り、時間的にも空間的に同じ様子が生じることが見られる。すなわち、Sg_電流系に関する電磁誘導に関して、異なる結果を導き出すのは、地殻変化の性格の相違によって考えなければならないということが示された。
局地的所磁気変動成分の分離の問題について

畑田 広
東京大学・理学部

脚が旧聞に属するが筆着等（福島・畑田 1970 佐）は従前より本学会に於いて、1958年7月14～15日の5デー現象の地磁気変動について調査を来たし、方針を、この現象については、その鉱斜れとも加えられた点につき述べ、併せて、局地的所磁気変動の解析の一般論に及びたい。

1. 福島教授の記述に於て中国大中華民国地磁気觀測所（北京、広州、台山、社団）に於ける観測値を示す。結果は、筆着等の見解の如く、磁の変動割が、大なりティータルなもとのあることを示せり。

3. 3成分の場合について問題点を省略した。

\[\Delta H, \Delta Z \]

\[\Delta Z_e, \Delta Z_i \]

\[\text{1 hr} \]

* \[\Delta Z = \Delta Z_e + \Delta Z_i \]

** 矢印は4日の極大となる時刻を示す。
西田 豊

北海道

昨年秋の学会において北海道南部の10月深層の地磁気変動観測は、専門家にと
てて電気的誘導の計算を行うことにより、海面表層の電気伝導度の差異をはっきりと
発見した。その計算の結果、海面と比摂する伝導度を示すようになりつつある。したがっ
て、海面において、地磁気変動の原因を考えるためには、地磁気変動を考慮してい
る。石狩平野は日本海と太平洋を連絡するように分布しているが、一種の混合河口を
たした河口である。そこで、そのような有機物が河川をなすかどうかを検証する為、地
震及び観測を並行して地電流観測を行ったので報告する。一つは岩手より東北地方の地
電流の同時観測であるが、この地域では地電流を示す電子物が極めて高く、電磁成分が10分
間で70%、東西成分が0.1%となっている。これらを24日大発生、24日採集で観測したと
考えると、ADM/ADMの値は1.4よりもなる。その一地域では電磁探査の結果、Shar 6Kmを越える
河川があると考え、その地域の地電流変動が南東方の地電流変動を示す河川の影響と似ており、
その一地域では電極に導入されるConduction currentの影響を考えられる。観測3を同様の計算を行うことにより、ADM/ADMの値と河川の導入が十分観察されるが、もっとも観測は北海道地
震観測所での地震観測に並行した長期間的地電流観測として行われた。これは現在発表
されが進行中であり、学会に係近取扱をする予定である。

1) 岩手県立・吉村端三郎；石狩地方の物理地理；物理地理；17，24-33，1969。
2) 村田一郎；石狩地方における地電流と地磁気変動分布との関係
影響，地電流観測所要覧，14，71-86，1971。
II-51

隠岐と島根半島における地震気観測結果について

（I）

鈴木明成、鈴木泰之、亀井繁秋、宮城理一郎

日常海に誘導されるような電流が海底の気象をもたらす極大だそうだろうか。ひとり海に考えてみるという単純な観測で観測を行った。世界には海にその原因があるようなCA現象が数多くあるが、それらの場所の海に比べて、わが日本海は厚くも深い、また粗くとも薄く周囲も閉ざされて、まるで海の世界のような海においての強度の誘導電流が急激に強うがあった所がある。

今回観測を行ったのは後述の西柿（SA）とその対

標する島根半島の湯松町片江（KA）である。その開

放状態海岸の富津市本部では地磁気の常時観測が行われて

おり、彼に以前常時観測を行っていた福德（MI）のデータ

も解析にあてて比較した。それらの位置関係は図に示した通りであるが、図には赤に

表す南（TD），湯松（PF），單願（CH），桟木（TS）の点が示されている。この4点は以前

Aumitome（1972）によって観測と解析が行われた地点である。

Aumitomeにかわらず、これらの地点でのAZはいずもAHと逆センサであり、AZ/AHの絶対値は内陸の流れるほど小さくなくって大きなく関係がある。またAZ/AHの周期特性が

表する傾向を示すが、それらの周期は短いものほど海岸に近く

現象である。これらのようにしてAumitomeは地下の構造層の現象の素の問題が出てくる所である。

今回の観測結果についてには何か断言するものでもあり、いくつかの特徴ある傾向が見つかった。西柿（SA），片江（KA），木子（KI）の3点を比較して、スケーリング inne,

\[\Delta H = \text{SA} > \text{KI} > \text{KA} \]

\[\Delta Z = \text{KA} > \text{KI} > \text{SA} \]

である。木子が標準的な内陸の観測地とすれば、AHが海岸の観測点である片江で小さく、さらにAZは海上の観測点である西柿で小さいということである。また西柿におけるAZの変化が、磁場の変化ベクトルの向きによっては分離することを考慮に入れると、日本海の誘導電流は

し、磁場に影響を与えるということができるであろう。

しかし従来のデータについては以前にも一度報告したことがあるが、非常しにAZの出

有更好的、30分以上の周期変化については\(\Delta Z/\Delta H \)の絶対値は0.1前後しかは

らない。

Reference

Aumitome: Geomagnetic variation anomaly in the vicinity of Tottori, facing
the Japan sea, in the South-western Japan. Contributions,
II-52

従来と島根半島にかかる地磁気観測結果について

（三）

田崎重、豊見隆永、屋賀義一郎

（兵庫大学）

従来の観測より、今島半島半島と従来で地磁気観測を行った、この2点の観測データと従来観測データのある本子について一つの試みとして、次のようなデータ処理を行ってみようと考えている。

ソノグラムは自記電磁気計の記録としてよく知られているが、この周期（地磁気変化を含む）の変化に対する利用は少ない。それを計算機を利用して数学的にさまざまな処理を試み開発し、実際の変化の長期間データを応用して本学会でも報告した。それらを地磁気的には、より短周期の変化に適用して、特にその模型を傾向として知ることにより、CA研究の一助となるというが後進でである。理論的には、地磁気のベクトルは直線、transfer function A, B の時刻毎の振幅、相位の傾向が観測される等である。

時間（t）の変数としてのデータ {f(t)} に対して

\[\text{Pow}(f, T) = \text{ABS} \left[a \int_{-\infty}^{\infty} f(t+\tau) \cdot e^{i\Phi f(t)} d\tau \right] \]

\[\text{Phase}(f, T) = \text{ANG} \left[a \int_{-\infty}^{\infty} f(t+\tau) \cdot \Phi f(t) \cdot e^{-i\Phi \tau} d\tau \right] \]

が計算式である。
II - 53.

隠岐島および島根半島における地電流観測

宮崎野二郎、（島根大・教養）
鈴木 亮・巻井豊永・鈴木明成（京大・理）

地磁気変動が大きく、またガスモデルによって Conductor 面が深さおお 10 km まで上昇してきていることも考えられている隠岐島およびその対岸の島根半島について昭和49年3月の約一ヶ月間地電流観測を行った。今回はそのうちの隠岐島での観測結果について序報的報告を行う。

電場の変化はおよそ $S 70^\circ E$ ～ $N 70^\circ W$ の方向に polarize している。

- 電場変化 ≈ 1.5 ($T = 10 \text{ min}$)
- 磁場変化 ≈ 1.0 ($T = 100 \text{ min}$)
- 磁場変化 ≈ 0.1 ($T = 1 \text{ day}$)
地震の地殻変化から推定される地震動強度の変化が70年間の最大値が大まかな結果変化を示すことが期待されている。したがって地震動強度の変化を考慮することにより、地震動の動的特性が推定できることを示す重要な事実である。また、地震動の動的特性は、地震動の最大化を考慮することにより、地震動の動的特性が推定できることを示す重要な事実である。
The electrical conductivity of 6 Apollo lunar rocks with Fe$^{2+}$ contents from 4 to 20 wt% has been measured in the temperature range from 20°C to 1000°C. Both DC and low frequency AC (5 Hz) measurements were made using a three-electrode technique. The six samples are selected to well represent typical lunar rocks. They are igneous rocks and breccias of either basaltic or anorthositic composition as given in the following.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Type</th>
<th>FeO content (chemical)</th>
<th>FeO content (magnetic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#10048</td>
<td>Basaltic microbreccia</td>
<td>16.3%</td>
<td>19.8%</td>
</tr>
<tr>
<td>#15058</td>
<td>Blocky basalt</td>
<td>20.0</td>
<td>16.4</td>
</tr>
<tr>
<td>#15418</td>
<td>Blocky breccia</td>
<td>5.4</td>
<td>6.7</td>
</tr>
<tr>
<td>#15555</td>
<td>Coarse grain basalt</td>
<td>22.5</td>
<td>17.6</td>
</tr>
<tr>
<td>#68415</td>
<td>Anorthositic gabbro</td>
<td>4.3</td>
<td>4.3</td>
</tr>
<tr>
<td>#68815</td>
<td>Anorthositic breccia</td>
<td>4.8</td>
<td>6.3</td>
</tr>
</tbody>
</table>

For all samples studied, the electrical conductivity (σ) was observed to depend on the furnace atmosphere and on prior thermochemical treatment. However, reproducible data could be obtained for specified sets of conditions. This dependence was most severe for the more porous or cracked samples and was apparently associated with chemical alteration of samples surface regions. σ was lowest for samples measured in reducing atmosphere (Hz-H$_2$ mixtures) and after reduction at high temperatures. Furthermore, data obtained under these conditions were very similar to data obtained during the initial heating, and are considered to be most representative in pristine lunar samples. Experimental results under these conditions are shown in Fig. 1. As shown in the figure, the dependence of σ on FeO content is sufficiently strong that it makes any dependence on structure of secondary importance.

The dependence of σ on temperature T can be described analytically by

$$\sigma(T) = \sum_{i=1}^{2} \sigma_o^{(i)} \exp\left(-\frac{E^{(i)}}{kT}\right).$$

The parameters $\sigma_o^{(i)}$ and $E^{(i)}$ obtained by a least square fit are presented in the following table.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Test frequency</th>
<th>$\sigma_o^{(i)}$ (ohm cm$^{-1}$)</th>
<th>$E^{(i)}$ (eV)</th>
<th>$\sigma_o^{(2)}$ (ohm cm$^{-1}$)</th>
<th>$E^{(2)}$ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10048</td>
<td>DC</td>
<td>5.18×10^{-5}</td>
<td>0.533</td>
<td>5.09×10^{-2}</td>
<td>0.867</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.66×10^{-5}</td>
<td>0.559</td>
<td>3.50×10^{-2}</td>
<td>0.896</td>
</tr>
<tr>
<td>15058</td>
<td>DC</td>
<td>6.97×10^{-5}</td>
<td>0.624</td>
<td>1.30×10^{1}</td>
<td>1.570</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.78×10^{-5}</td>
<td>0.593</td>
<td>1.34×10^{1}</td>
<td>1.374</td>
</tr>
<tr>
<td>15418</td>
<td>DC</td>
<td>4.39×10^{-7}</td>
<td>0.514</td>
<td>1.25×10^{1}</td>
<td>1.280</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>9.84×10^{-4}</td>
<td>0.971</td>
<td>1.37×10^{10}</td>
<td>1.509</td>
</tr>
<tr>
<td>15555</td>
<td>DC</td>
<td>3.18×10^{-6}</td>
<td>0.420</td>
<td>2.16×10^{-1}</td>
<td>0.993</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.27×10^{-4}</td>
<td>0.604</td>
<td>3.68×10^{-1}</td>
<td>1.040</td>
</tr>
<tr>
<td>68415</td>
<td>DC</td>
<td></td>
<td></td>
<td>1.27×10^{6}</td>
<td>2.640</td>
</tr>
<tr>
<td>68815</td>
<td>DC</td>
<td></td>
<td></td>
<td>1.65×10^{-1}</td>
<td>1.340</td>
</tr>
</tbody>
</table>

144
地球核の物理的状態

地球核の物理的状態は、直観的な観測データを晩建築することと、地球内部に含まれると思われる状態まで、直観的な事実が得られないために、あまりよくわからないとされる。実験室内で得られる速度・圧力下での実験結果を説明する、状態方程式や経験則を使うことによって、実験データを外挙し、Shock waveの実験結果を解析することから、地球核内部の物理、温度、密度、断熱温度勾配、粘性、電気伝導度、磁気伝導度等の推定が行われている。しかし、各物理量の推定に対して、実験状態が不清楚、試料が不明なため、推定された値は非常に、比較的少ないと考えられている。ここでは、内部材料の変化が間違いないと仮定して、現在ある実験データ、観測データの範囲内での物理状態の推定が行われるかを考察する。

物性の変化、圧力変化に対して、Gruneisen Constantが最も重要なパラメーターである。Higgins and Kennedy (1971)は、金属の融解温度の圧力変化の実験結果から得られたKennedyの法則を用いることによって、地球核内部での断熱温度勾配が、融解温度勾配より大きいと推定した。しかし、Kennedyの法則が成立しないため、Gruneisen Constantが圧力下の変化によって、断熱温度勾配に対して、一定値を取っている。図には、Shock waveから求められた値と実験結果を示す。これにより、物性の変化が推定されている。このような圧力下の変化を含め、断熱温度勾配は、融解温度勾配が越えることができない。図は、Gruneisen Constantの推定変化を示すことを目的としている。各物理量の間の関係を考慮に入れ、現在ある実験データを推定することができる。この結果を用いて、地球核内部の物理的な状態の推定を進めよう。
地球大気の起源（その2）
— 命が仮からみた —

小畑 哲
東京大学理学部

40Arがカーボンモデルとして、地球は大気圏、地殻、マントルから成っていると仮定する。更に、マントルから地殻へ、地球の生歴を通じてK-40をもと仮定させるとき、仮定する。この仮定は、火山岩のSr、Pb同位体比の比較からも検証されている。他方、A・及び命が仮は、マントルからの大気を放出させることがある。この仮定は、Hurley et al. (1962, 1969)による火山岩のRb-SrおよびK-Ar年代の比較から支持されている。以下

(i) $^{40}\text{Ar}/^{36}\text{Ar} = 295.5$: 現在の大気中

(ii) $^{40}\text{Ar}/^{36}\text{Ar} = 10^{-4}$: 45.5億年前

(ml) Ar = 6.6 x 10^{13} tons : 現在の大気中

Ar = 0 : 地球誕生時の大気中

(i)〜(iii)を足す解は、(1) Arの脱ガスrate、(ii)瞬間的な脱ガスの割合、(iii)その時期、(iv)地球内部のK-含有量、(v)K-transport rateおよび地上部地球内部における$^{40}\text{Ar}/^{36}\text{Ar}$の値をパラメーターとして無限に存在する。しかし地球内部（マントル）中のK-含有量を50ppm以上とすると、解に対する選択の範囲はきわめて限られてしまう。したがってモデルの数値の解析から考えれば、次の様々な結論を得る。

(1) Arの脱ガスが、連続的なプロセスで起こったと考えられる。したがって(i)〜(iii)の条件を満たすモデルをつくることは困難である。つまりRubeyの主張する様な大気の連続的成長は考えにくい。

(2) Arの脱ガスが地球の初期にはほど瞬時に起こると仮定すると(i)〜(iii)の条件に合ったモデルをつくることができる。

(3) (2)の場合、もし地球内部（マントル）におけるAr同位体比$^{40}\text{Ar}/^{36}\text{Ar}$がわかれば、モデルは更に限定される。因みに地球内部にあける$^{40}\text{Ar}/^{36}\text{Ar}$の値は、海山玄武岩のExcess Arあるいはマントルから導き出されたUlttramafic rocksの中のTrapped Arから仮定することも可能である。

References
ポセオガントロールを用いて石炭酸素

田中・松村・池野

中央大学理学部地球物理学教室

P_{O_2} モニタリングを実施した。

$CO_2 + H_2 = CO + H_2O$
$2CO_2 = 2CO + O_2$

この反応の平衡定数をそれぞれ K_0, K とする。

P_{O_2} は次式で計算される。

$$P_{O_2} = \frac{1}{2} K_0 \cdot (1 - 1) \left[(1 - 1) + \sqrt{\frac{k}{K}} \right]$$

この式に、P_{O_2} は初期混合比、$rac{k}{K}$ は CO_2 と H_2 の混合比である。（Muuin & Ostrom）を図に示す。

CO_2 と H_2 を一定の割合で混合すると

電極拡散は下の様子で200 mole以下に稀薄シールドされているが、TRI Mを繰り返すためにはウォータージャケットを施い

Muuin A. & E.F. Ostrom (1964) Phase equilibrium among

oxide in steelmaking, Allnion-Wesley Publish. Co.

松村（1973）ポセオガントロール

「岩石-鉱物の生成に伴う微粉分配、自然変化」より

図1

1. 調整管
2. 湯面管
3. 燃焼器
4. 反応器
5. 燃焼器
6. ガスフィード
7. 流れ圧力
8. サプレッサー
地域のTertiary basaltの自然残留磁化その他のためにCampbell等 (Campbellと
Runcorn, 1965）の報告がなされてすでに久しいが、その後Domenは、Campbellが更に
採取し、自然残留磁化の測定を行った試料 (Campbell, 1964) について、自然残留磁化の
再測定、実験室内における長時間放置実験、熱磁気解析および交流消磁などによる
磁化の安定性の検討を行い、当学会においても報告したことがある (Domen, 1965,
1966)。
その後Domenは、Campbellの助力をえて、更に残かの試料を、地域から採取し
たが、これらの試料は、不幸にして、そのまま10年近く手をかけられることなく放置
されたままになっていたが、今回、その自然残留磁化の測定を行うことができたので、
その結果を、従来の測定結果と合わせて報告する。

Refs.
Campbell, C.D. & S.K. Runcorn, 1965; "Magnetization of the Columbia River basaltls in
Grant G-4643, (Domenの測定結果も含む。).
Domen, H., 1965; "The remenent magnetization of Columbia River basalto, Washington
Domen, H., 1966; "The remenent magnetization of Columbia River Tertiary basalto,
Magnetic Properties of YAMATO Meteorites found in Antarctica

(1) Yamato - 1969 Meteorites

T. Nagata and N. Sugutu

Nat. Inst. Polar Res. and Geophysical Inst., Univ. Tokyo

9 fragments of meteorites were found by a JARE 10 field party within a very limited area (10 km x 5 km) at a locality about 71°50'S and 36°15'E in Antarctica in December 1969. Further, 11 new fragments of meteorites have been found in almost the same locality by a JARE 14 field party in December 1973.

The magnetic properties as well as chemical, petrographical and other properties of these meteorites are under detailed studies. In this first report, the magnetic properties of 4 typical Yamato (1969) meteorites are summarized with reference to their chemical and petrological characteristics. The petrologically identified names and chemical data of these 4 samples are summarized together with their magnetic properties in the following table.

<table>
<thead>
<tr>
<th>Identification</th>
<th>YAMATO - 1969</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enstatite</td>
<td>Ca-poor</td>
<td>Carbonaceous</td>
<td>Olivine-bronze</td>
</tr>
<tr>
<td></td>
<td>chondrite</td>
<td>achondrite</td>
<td>chondrite (Type III)</td>
<td>chondrite</td>
</tr>
<tr>
<td>Metal Fe</td>
<td>22.18</td>
<td>0.66</td>
<td>0.15</td>
<td>12.69 (%)</td>
</tr>
<tr>
<td>Ni</td>
<td>1.36</td>
<td>0.004</td>
<td>1.32</td>
<td>1.52 (%)</td>
</tr>
<tr>
<td>Co</td>
<td>0.089</td>
<td>0.003</td>
<td>0.075</td>
<td>0.081 (%)</td>
</tr>
<tr>
<td>Oxide FeO</td>
<td>0.48</td>
<td>12.58</td>
<td>27.84</td>
<td>12.02 (%)</td>
</tr>
<tr>
<td>Sulfides Fe</td>
<td>7.20</td>
<td>0.85</td>
<td>2.30</td>
<td>3.38 (%)</td>
</tr>
<tr>
<td>S</td>
<td>4.71</td>
<td>0.49</td>
<td>1.32</td>
<td>1.94 (%)</td>
</tr>
<tr>
<td>Susceptibility (χ_e)</td>
<td>2.141</td>
<td>8.96</td>
<td>477</td>
<td>597 (x10^8 emu/gm)</td>
</tr>
<tr>
<td>Saturation magnetization (J_s)</td>
<td>33</td>
<td>0.63</td>
<td>81</td>
<td>18 (emu/gm)</td>
</tr>
<tr>
<td>Curie Temp. (\theta_C)</td>
<td>769</td>
<td>780</td>
<td>540</td>
<td>799 (°C)</td>
</tr>
<tr>
<td>NRM (H = 0, Oe rms)</td>
<td>3,535</td>
<td>15.4</td>
<td>101</td>
<td>3764</td>
</tr>
<tr>
<td>(H = 50) Oe</td>
<td>205</td>
<td>19.0</td>
<td>61</td>
<td>3377</td>
</tr>
<tr>
<td>(H = 200) Oe</td>
<td>31</td>
<td>12.3</td>
<td>9.0</td>
<td>574</td>
</tr>
<tr>
<td>IRM (b)</td>
<td>4.8 x 10^-5</td>
<td>2.0 x 10^-8</td>
<td>1.5 x 10^-6</td>
<td>1.6 x 10^-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(emu/gm/Oe^2)</td>
</tr>
</tbody>
</table>

As described in the above table, the ferromagnetic constituents in A, B and D are mostly Fe or FeNi, while they are magnetite in C. All these meteorite samples have a fairly stable NRM, which could be attributed to TRM acquired either in the terrestrial upper atmosphere or on the ground.
A Summary Report on the Basic Magnetic Properties of Apollo Lunar Materials

Takami NAGATA and F.C. SCHWERE

The basic magnetic properties of 42 samples of Apollo 11 ~ 17 lunar materials have been examined for a temperature range of 4.2° ~ 1080°K. These lunar samples consist of 13 igneous rocks, 22 breccias and 7 kinds of fines.

(A) The dominant saturation magnetization \(I_s \) is \((0.1 \sim 0.2) \text{ emu/gm} \) for igneous rocks and \((0.6 \sim 1.0) \text{ emu/gm} \) for breccias.

(B) The Curie point histogram has the median value at 770°C, but the dispersion toward the lower temperature is broader in breccias than in igneous rocks, as shown in Fig. 1. It is concluded thus (a) that the principal ferromagnetic constituent in lunar materials is the native metallic iron containing small amounts of Ni and Co; (b) that the content of native iron is \(0.05 \sim 0.1\) wt% in igneous rocks and \(0.3 \sim 0.5\) wt% in breccias; and (C) that Ni content in the native iron is higher in breccias than in igneous rocks.

(C) \(I_s \) is roughly proportional to the bulk content of Ni in lunar materials. This result may suggest that the larger content of native iron in breccias is mostly due to a mixing of meteoritic iron. However, the observed values of \(I_s \) in a number of samples are larger than the theoretical estimates based on the mixing hypothesis.

(D) 8 of 11 igneous rocks, 2 of 18 breccias and 6 of 7 fine samples contain only almost pure iron (FeO), and all the other lunar samples also contain a considerable amount of FeO together with kamacite (FeNi alloy).

(E) The Ni content of the kamacites in lunar materials mostly ranges between 3 and 8 wt%, which is in agreement with that of meteorites. Since meteorites never contain FeO, a large amount of FeO in lunar materials cannot be attributed to the meteoritic origin. It is then concluded that the major parts of FeO in breccias and in some shock-metamorphosed igneous rocks have been produced by the shock-metamorphic breakdown of fayalite \(\text{Fe}_2\text{SiO}_4 \), chromium ulvöspinel \(\text{FeCr}_2\text{O}_4 = \text{Fe}_2\text{TiO}_4 \), ilmenite \(\text{FeTiO}_3 \), etc.

(F) The grain size of native iron, estimated from the viscous magnetization and superparamagnetic characteristics at various temperatures, ranges from several tens of \(\AA\) to 300 \(\AA\) in mean diameter for the single domain range. The distribution function has the maximum at \(100 \sim 200\) \(\AA\) in breccias and fines. There is observed evidence that most igneous rocks contain a considerable amount of multidomain grains also. The superparamagnetic component causes a reduction of the apparent coercive force at temperatures higher than the blocking temperature.

(G) The paramagnetic susceptibility \(\chi_p \) of lunar materials at room temperature is almost proportional to the bulk content of \(\text{Fe}^{2+} \), represented by \(\chi_p(T = 300 \text{K}) = 1.8 \times 10^{-6} \text{ (FeO) } \frac{\text{emu}}{\text{gm}} / \text{wt-%} \).

(H) The initial magnetic susceptibility \(\chi_o \) is not simply proportional to \(I_s \), but \(\chi_o / I_s \) ranges from \(5 \times 10^{-4} \) to \(10^{-2} \), depending on the degree of contribution of the superparamagnetic susceptibility of fine particles.
遺跡の磁気探査

--- 亀渡層古墳跡に於ける 一例 ---

高木雅之* 山谷雅彦** 中村 浩***

* 高大考古工 二陸に丘陵遺跡探査員 大阪府教務委員会

磁気的な検査で、場所の土壌を覆う物体を地中に埋められている時、その地変を磁気探査を行うことにより、地震等に影響を及ぼす可能性のある物体を発見することが可能である。特に、考古学上の遺跡や遺物（例えば、古代遺跡または窯業体など）を対象としたものが多い。特に、Oxford大学のH.J. Aitken氏は、スロートン磁力計を開発したことで、1960年代以降、こうした遠隔的な遺跡の探査に成功してきている。しかしながら、日本においては、このような探査は考古学の分野に行われることは少なく、対象ではあるが、実務では行われていない状況である。

報告者等は、昨年度、携帯型のスロートン磁力計（測定機：PPM-739A）を用いて、遺跡や窯業体等の磁気探査を何箇所か実施してきている。つまり、大阪府南部の邂逅遺跡が、遺跡遺物探査（遺跡番号K-217）、位置：北緯34°27′54″、東経135°30′27″を対象として、磁気探査、窯業体の発掘、窯業遺物の調査を通して遠隔的な発掘を行う機会を得ており、その結果については簡単な報告を行う。

観測された磁気異常は、最大500μT程度であり、発掘された窯業体は、軸方向に約N2°Wの勾配を持ち、直立型の窯業遺物であった。窯業遺物の調査の結果、D = 10μm, I = 60°, T = (1.0 ± 0.8) × 10^{-3} gys cm/μg である。
丹波帯北部古生層の古地磁気

内岡公次，服部勇，伊藤政昭

福音堂大学教育学部，丸岡中学校

日本とみかけた古生層。古地磁気の研究は，池田，藤原（Hinata & Fujimura; 1965，1967, Fujimura; 1967）もやっていたrei時期に始まった。著者等も，日本とみかけた古生層の磁気の特徴を調べた研究所で，古生層の標準的な成果を発表したが，その磁化を検討した結果，Hinata "schallstein" は磁化がN.R.M.を有するものであるという見解をとった。

今回は，福島県内の丹波帯北部から採取された試料に，一部の地域については，古生層（主に2番台）中のschallsteinを含む試料を採集し，その岩学的検討とともにN.R.M.を測定した結果を述べる。

1) N.R.M.の強さはschallsteinの変成度に大きく支配されている。変成の進行，epidoteの生成，および試料の違いで，磁化が著しく変化する。測定は非常に困難である。数値に示す。変成が進んでいる地点の試料は，普通のAl ii 酸化の混ざりを伴う磁化をも持つ。十分，古地磁気学の研究に役することができるとと思われる。

2) N.R.M.の測定結果については，単純な面に修正を施して行ない，大体が殆ど水平になっ

て，当時の日本への古地磁気は，赤道に近く，N.20°ないしN.30°の値を示す。しかし，若者の時代の地磁気より下，古生層の構造は非常に複雑で，地層が傾む下部に傾いた場合を多く考えられると，単純な地層の走行を指して，傾斜を水平に修正することは，上手な場合に限られ，傾きを示すとならない。二三の修正を施して行うためには，その地域の地層の構造が詳しく知られることが必要である。今後はこれに

現在，詳細な野外調査も含めて，その構造の検討を行なっているので，その結果を用い

てこの地域における古生層の磁化の位置をともに示せるものである。
白亜紀における東北日本平均の磁場

未角の問題集

安田克己

大阪大学基礎工

東北日本における白亜紀の磁場の傾斜と、それによる異常磁場について考察する。基本的には、東北日本の異常磁場は、白亜紀に於ける東北日本の異常磁場の傾斜と、それによる異常磁場について考察する。基本的には、東北日本の異常磁場の傾斜と、それによる異常磁場について考察する。基本的には、東北日本の異常磁場の傾斜と、それによる異常磁場について考察する。基本的には、東北日本の異常磁場の傾斜と、それによる異常磁場について考察する。基本的には、東北日本の異常磁場の傾斜と、それによる異常磁場について考察する。
姫路周辺の火山岩（白亜紀－古生紀）
の古地磁気学

和田・小野 理

我々は1973年度に、姫路市周辺において下台山グループおよびその下位にあるCretaceous の溶岩を採集した。この研究の当初考えられていた目的は、
1) Cretaceous のnormal - reverse の変換を求める。更にこれからの岩をK - An 测定して、再解釈を試みた。S. ジョージ・ヘイツとN. ハースウィック・ミッカレフ、T. ルイビル (Heirtzler et al., Goldstein and Patman, McElhinny and Curie 1963) との研究を検討する。
2) Cretaceous のpolinormal variation を求める。次にこの影響を考慮した上で日から見た過時なwandering を求める。

等の目的で採掘された。BBA Cooling unit から約200 サンプリングを採集し、これを347278 とし50, 100, 200, 300, 400 0eBの各段階で交流消磁を行った。これらのunit の中で最もの状態が良く、 alteration の影響が少ないと思われるサ
ンプルとかもも、2回選んで4点にBPAにより年分を決定した。

Table 1: Samples and Cooling Unit No. (HM)

<table>
<thead>
<tr>
<th>地層名</th>
<th>サンプル</th>
<th>Cooling unit no. (HM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>天山台山</td>
<td>3, 4, 5, 6</td>
<td>7, 8, 9, 11</td>
</tr>
<tr>
<td>Cretaceous</td>
<td>1, 2, 10, 12</td>
<td>Paleogene</td>
</tr>
<tr>
<td>紫雲雲層</td>
<td>半田台</td>
<td>3, 4, 5, 6</td>
</tr>
<tr>
<td></td>
<td>松原村</td>
<td>13, 14, 15</td>
</tr>
<tr>
<td></td>
<td>鷹巣町</td>
<td>16, 20, 21</td>
</tr>
<tr>
<td>紫雲雲層</td>
<td>下田町</td>
<td>22, 23, 24, 25</td>
</tr>
<tr>
<td></td>
<td>紫雲雲層</td>
<td>17, 18, 19</td>
</tr>
<tr>
<td>二階里層</td>
<td>26, 27, 28, 29, 30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31, 32, 33</td>
<td></td>
</tr>
</tbody>
</table>

NRM の方向は10回に10回でランダムであることと推定される。年分については、HM8
の結果について2回の測定の結果。
56.8 my. および 54.1 my.
の意味がある。従って、上記Meaning Tertiary - Cretaceous Boundary が最もお
すことの可能性があるものと考えられる。

姫路周辺火山岩のNRM方向 (equal area proj.)

HM19, 26 は不安定。HM27-33 は計算中。

下台山 14-9, 11

下台山 10-9, 11

下台山 13-9, 11
II-87

古地磁気データの球面調和解析

III. 回帰解の一意性について

河野 長

担当者

古地磁気学で得られるデータ、欠角（I）と総角（D）の組合わせによって、地球磁場の形はnon-uniqueに決められることはある回発表した（日本地球磁気学会昭45・議論, p.7, 98, 1974；初め手稿の申訳者氏は間違っている）。この際、換言してデータが完全でない（例えばDしか見当たっていない）場合には、ポテンシャルは非一意になることが示した。しかし、その際あげた例では、Dについてのある境界条件を満たす解が無数に存在することを述べている。そこで、X/Y, Z/Yをできるだけ有効（あるいはI）と仮定した場合に、1つ以上の解が存在するという境界条件の例もあげておきたい。特に、X/Yが可能な一意性が存在しない場合、X/Yに相当してZ/Yの形は境界条件を満たす場合、特に非一意性の場合は、その存在が示される。実際、J.C. Cain and B.T. Trombley (1974, 私発) はI, G, F, Dを非零のデータのうち、Yを無限に多くDデータからのすべてを同じポテンシャルを求める（i.e. Dの場合は任意に球面上の1点での全磁場を指定している）と述べ、それらからの解のうちユニーク解が必ず存在するとしている。

しかし、後者の主張は次の2つ理由により正しくないと考えられる。1) Dについては全て入場面においてnon-uniqueであることが示されている。2) Fが非零の場合ではあらゆる領域がuniqueに決まらない場合があるとするBackus (J.G.R. 25, 639, 1970)により示されている。つまり、Cain & Trombleyの数値実験は、用いる非一意性の形に依存している（i.e. m=5, すで）を示したものである。(1)、(2)も示すようにnon-uniqueの場合を示すことが示されない。また、ジ再現された個数のHarmonicsが求められており、しかまら、Harmonicsが変数されているならば、DがなくともDを制限すればpotentialはuniqueになる。Cain & Trombleyは詳細に述べたが、これに相当する場合を類似のものを示すようなものと考えられる。

X/Y, Z/Y, 又はIを除くかる境界条件の場合の一般解はnon-uniqueであると主張される。特にこのX/Yの場合により、potentialはHの形に相当した、欠角の無限に多い場合に相当する。potentialは

\[A \sum (a/r)^{m+1} P_m^{(m+1)}(cos\theta) \{ a_m + b_m \sin \phi \} \] と表される。potentialは

\[A \sum (a/r)^{m-1} P_m^{(m-1)}(cos\theta) \{ a_m + b_m \sin \phi \} \] と示され、\(a_m, b_m \)はガウス記号を満たす。

\[\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m,n} (r_m - r_n) \{ c_m + d_m \sin \phi \} \] と示される。この中で、\(A_{m,n} \)はガウス関数を満たす。